PROCEEDINGS OF SPIE # Photonics for Solar Energy Systems VIII Alexander N. Sprafke Jan Christoph Goldschmidt Gregory Pandraud Editors 6–10 April 2020 Online Only, France Sponsored by SPIE Cosponsored by City of Strasbourg (France) Eurometropole (France) CNRS (France) Région Grand Est (France) iCube (France) Université de Strasbourg (France) Cooperating Organisations Photonics 21 (Germany) EOS—European Optical Society (Germany) Photonics Public Private Partnership (Belgium) Photonics France (France) Published by SPIE Volume 11366 Proceedings of SPIE 0277-786X, V. 11366 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Photonics for Solar Energy Systems VIII, edited by Alexander N. Sprafke, Jan Christoph Goldschmidt, Gregory Pandraud, Proc. of SPIE Vol. 11366, 1136601 · © 2020 SPIE CCC code: 0277-786X/20/\$21 · doi: 10.1117/12.2571783 The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org. The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon. Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Photonics for Solar Energy Systems VIII*, edited by Alexander N. Sprafke, Jan Christoph Goldschmidt, Gregory Pandraud, Proceedings of SPIE Vol. 11366 (SPIE, Bellingham, WA, 2020) Seven-digit Article CID Number. ISSN: 0277-786X ISSN: 1996-756X (electronic) ISBN: 9781510635043 ISBN: 9781510635050 (electronic) Published by SPIE P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445 SPIE.org Copyright © 2020, Society of Photo-Optical Instrumentation Engineers. Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/\$18.00. Printed in the United States of America. Publication of record for individual papers is online in the SPIE Digital Library. **Paper Numbering:** Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows: - The first five digits correspond to the SPIE volume number. - The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript. # **Contents** | ∨
∨ii | Authors
Conference Committee | |----------|---| | | LIGHT MANAGEMENT AND ENERGY YIELD IN TANDEM AND SINGLE JUNCTION COLAR CELLS | | 11366 09 | Photovoltaic energy yield predictions using satellite data (Invited Paper) [11366-8] | | | PEROVSKITE SOLAR CELLS | | 11366 0G | Remarkable carrier diffusion length and slow carrier cooling in mixed halide perovskite [11366-19] | | 11366 01 | Plasmonics-enhanced organic solar cells with complex metallic nanoparticles [11366-21] | | | NEW CONCEPTS | | 11366 OM | Towards the implementation of a p-nc-SiOx:H/p-SiC:H double window layer for high efficiency, roll-to-roll processed flexible thin film silicon solar modules [11366-25] | | | ANGULAR DEPENDENCY OF PHOTONICS STRUCTURES AND SPECTRAL SPLITTING | | 11366 OP | Holographic spectrum-splitting photovoltaic system using bifacial cells [11366-29] | | 11366 0Q | Angle-independent diffractive optical elements for efficient solar energy conversion [11366-30] | | | 11366 ADDITIONAL PRESENTATIONS | | 11366 OV | UV degradation mechanism of TiO ₂ -based perovskite solar cells studied by pump-probe spectroscopy [11366-218] | | | POSTER SESSION | | 11366 OX | Silver nanoparticle-based anti-reflection coating for solar cells [11366-33] | | 11366 OZ | Algorithm for precise positioning of photovoltaic panels [11366-36] | |----------|--| | 11366 10 | Tailoring the structural and electronic properties of CsPbBr ₃ by Mn doping [11366-37] | | 11366 11 | Density functional theory based study of CsPb(Cl/Br) ₃ mixed halide perovskites with experimental validation [11366-38] | ## **Authors** Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc. Bartesaghi, D., 0M Bhattacharya, Sayan, OG Buonassisi, Tonio, 09 Chakrabarti, Subhananda, 10, 11 Chauhan, Kamlesh Kumar, 0G Chen, Chun-Wei, 0V Chen, Tzu-Pei, 0V Chrysler, Benjamin D., 0P Das, Abhijit, Ol Datta, Prasanta Kumar, 0G Dhawan, Anuj, Ol Dutta, Pranab Kumar, 0G Hamers, E., 0M Kostuk, Raymond K., OP Kumar, Kamal, 01 Li, Jia-Xin, 0V Li, Shao-Sian, OV Limodio, G., 0M Liu, Haohui, 09 Luo, Chih-Wei, 0V Osada, Minoru, 0V Pandey, Nivedita, 10, 11 Peters, Ian Marius, 09 Plachta, Kamil, OZ Prodhan, Sayan, OG Sasaki, Takayoshi, OV Schaadt, Daniel M., 0X Shabat, Mohammed M., 0X Singh, Bhaskar, OX Smets, Arno H. M., 0M Thilakan, Anusha Puliparambil, 0V Tsukagoshi, Kazuhito, OV Yabushita, Atsushi, 0V Yolalmaz, Alim, 0Q Yüce, Emre, 0Q # **Conference Committee** #### Symposium Chairs Francis Berghmans, Vrije Universiteit Brussel (Belgium) **Thierry Georges**, Oxxius SA (France) Paul C. Montgomery, Université de Strasbourg (France) Lluis Torner, ICFO Barcelona (Spain) ### Conference Chairs **Alexander N. Sprafke**, Martin-Luther Universität Halle-Wittenberg (Germany) **Jan Christoph Goldschmidt**, Fraunhofer-Institut für Solare Energiesysteme ISE (Germany) Gregory Pandraud, Technische Universiteit Delft (Netherlands) ### Conference Programme Committee **Benedikt Bläsi**, Fraunhofer-Institut für Solare Energiesysteme (Germany) **Christoph J. Brabec**, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany) **Mark Brongersma**, Geballe Laboratory for Advanced Materials (GLAM) (United States) Ning Dai, Shanghai Institute of Technical Physics (China) **Klaus Jäger**, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany) Jung-Ho Lee, Hanyang University (Korea, Republic of) **Ulrich Wilhelm Paetzold**, Karlsruher Institut für Technologie (Germany) Martin P. Pfeiffer, Heliatek GmbH (Germany) ## Session Chairs 1 Perovskite Silicon Tandem Solar Cells **Alexander N. Sprafke**, Martin-Luther-Universität Halle-Wittenberg (Germany) 2 III-V Silicon Tandem Solar Cells **Albert Polman**, AMOLF (Netherlands) 3 Light Management and Energy Yield in Tandem and Single Junction Colar Cells **Jan Christoph Goldschmidt**, Fraunhofer-Institut für Solare Energiesysteme ISE (Germany) - 4 Light Trapping, Disorder, and Hyperuniformity **Benedikt Bläsi**, Fraunhofer-Institut für Solare Energiesysteme ISE (Germany) - Perovskite Solar Cells Ulrich Wilhelm Paetzold, Karlsruher Institut für Technologie (Germany) - 6 New Concepts Gregory Pandraud, Technische Universiteit Delft (Netherlands) - 7 Angular Dependency of Photonics Structures and Spectral Splitting **lan Marius Peters**, Forschungszentrum Jülich GmbH (Germany)