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ABSTRACT

We first point out the practical difficulties of universal quantum computing which may prohibit practical applications as
universal computers. Then we show how to apply analog microelectronic circuits to realize the architecture, data
processing and parallel computing abilities of quantum computing via Hilbert space computing with analog circuits.
Such a Hilbert-space-analog (HSA) computer simulates the Hilbert space and its operators, and it is able to use and test
quantum algorithms developed for the real quantum computers. Such a computer would be free of most of the practical
difficulties of realizing and running a real quantum computer. This computer can be made universal. It is remarkable that
by using the same numbers of transistors as in today's PCs, such a HSA computer can manipulate ~107 analog numbers
corresponding to ~23 qubits, simultaneously, by quantum-parallel processing.
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1. INTRODUCTION

It has been realized1-3 that the computational operation called quantum computing does not need quantum systems. A
quantum computer4 with maximal capacity would use the information in the following superposition of states
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where N is the number of quantum bits (qubits) in the system; ψ j
k x t( ) ( , )  is a single qubit wavefunction which belongs to

the jth qubit; k is a digital variable where zero corresponds to the “down” state and one corresponds to the “up” state
when we have spins; and ai  is the weight of the ith superposition term. In the case of 2 qubits, this superposition is as
follows:
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Concerning data handling, the information is in the square of the absolute value of the coefficients ai. In a quantum

system, if we have N proper single particle states (what we call qubits here), all the ai
2
 values can represent different

numbers. The only relation which has a constrain on these 2N piece of numbers is the normalization relation:
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so basically 2N-1 numbers can be set up independently. Therefore, quantum information represents a large size memory
with a relatively small number of memory elements (bits). It is important to note here that these numbers are inherently
analog numbers, not digital ones. When we execute a quantum process on these qubits, this operation will act on all the
2N elements in Eq. 1, so it will influence all the 2N analog numbers. This is the reason why expectations for quantum
computing have skyrocketed recently. The apparent huge parallelism is very appealing and it suggests extraordinary
speed. However, in Section 2, we will show that there is no “free lunch”. Though qubits need only a small number of
quantum objects, the parallel manipulation of the numbers needs at least N*2N objects in a universally programmable
computer. This fact raises the question discussed in this paper: Can all these elements and the “qubits” be classical
physical objects, more specifically analog circuits, because these numbers are analog numbers? As we will show, the
answer is yes.

From a mathematical point of view, quantum computing with N qubits is equivalent to unitary operations on 2N vectors
in the Hilbert space and the apparent parallel computational potential is called quantum parallelism. The Hilbert space
and these operations can be realized in proper classical physical systems, too. Therefore, it is more proper to call
"quantum computing" Hilbert space computing (HSC) which can be done either in quantum or classical physical
systems. Quantum computing is nothing else than HSC realized in quantum systems. The main known advantage of
quantum computing is the parallelism and it is important to emphasize that this inherent property of the Hilbert space
exists also in those classical physical systems which can be described by Hilbert space.

The quantum physical realization of HSC is probably not the best representation for best computing performance with
reasonable economical efforts, as it is pointed out in Section 2. Quantum computing may be only a historical step to get
to the idea of HSC. In the rest of this section, we survey the previous initiatives for classical physical HSC .

Ferry and coworkers [1], who are the first authors to propose classical physical systems for HSC, describe an
electromagnetic wave-based HSC. As an introductory example, they show an optical grid which makes the Fourier
transform of the amplitude distribution of the incoming beam of light along its cross section. The observation angle of
the output wave will be the output Fourier-variable ("generalized frequency"). This system is a HSC unit and it can be
built up so that in corresponds to quantum Fourier transformation. The Fourier transformation is obtained in one
calculation step, so it is as massively parallel computation as quantum Fourier transformation.

O’uchi and coworkers [2] are the first authors who have built a real classical physical HSC. This computer is working
with digital circuitry. The parallel digital circuitry built from standard logic integrated circuits elements models the 8-
qubit Hilbert space and unitary transformations in it.

2. PRACTICAL DIFFICULTIES WITH UNIVERSAL QUANTUM COMPUTING

To appreciate the classical implementations of HSC, in this section we focus on the problematic sides of quantum
computers.

A large body of articles and media features has been published about the positive side of the quantum computation idea.
To achieve an effective progression in research and technology, it is also necessary to consider the adverse
characteristics. Here we consider the most apparent problems and limits of universal quantum computing. We define
“universal quantum computing” in the following way: a quantum computer that has the full capacity offered by quantum
information and that can be programmed to solve arbitrary tasks allowed by the properties of quantum information.
Less–then–universal quantum computers would have less problems, but also a less impressive performance. Special-
purpose quantum computers may use large number of qubits but may not use the full power of quantum parallelism; they
have fewer problems but also less computational power.
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i) Complexity and size. Mass(ive) problem.

First, let us consider the complexity of the quantum gate system of universal quantum computation, which sets a limit on
the achievable number of useful qubits. Any reasonably useful quantum computing application, either quantum or
classical Hilbert space computation, needs large-scale integration of elements because of the exponentially growing
number of quantum gates versus the number of qubits [4].

More precisely, for a universal Hilbert space computer, either quantum or classical, the minimal number of quantum
gates is 2N because at least one quantum gate has to act on each of the 2N elements of the superposition. However, the
quantum gates are not single elements; they contain elements which we here call acting elements. The minimal number
of necessary acting elements in this universal computer is N*2N because each quantum gate has to act on each one of the
N wavefunction-elements within each of the 2N elements of the superposition. Sooner or later, it may be possible to build
100 functioning qubits; however, it will be impossible to build a universal quantum computer of 100 qubits
computational capacity. Such a system would need 100*2100 ≈ 1032 independent acting elements; this system cannot be
built in the foreseeable future. If we suppose that the quantum gates are single atoms, and we use a densely packed
monolithic silicon “chip” solid state quantum computer, then this 100 qubit computer chip would occupy a solid cube,
over 12 meters on a side !!!

Some feature articles in the literature and magazines are saying that for a useful factorization algorithm, we would
need a few thousand qubits. Inspired by these claims, let us then imagine the following universal quantum computer. A
universal quantum computer chip would be a piece of monolithic solid, with the same volume as the Earth Globe. If we
suppose again that the acting elements are the atoms, we end up with the surprising result: the capacity of this enormous
system is only 158 qubits!

Thus, universal quantum computers with 100 qubits will remain science fiction; however, universal quantum
computers with much smaller numbers of qubits are indeed possible. To get a feeling of what is allowed by
microtechnology, let us continue these considerations.

Microprocessors using today's integration technology contain about 108 transistors and this number is presently
doubling by a factor two every 18 months, in accordance with Moore’s Law. Applying this trend to quantum computing
technologies, using the most optimistic estimation (i.e. one element to be integrated for each acting element of a
quantum gate) would result in only a very small quantum computer, ~ 22 qubits (we neglect any other elements needed
for functionality). As long as Moore’s Law holds, the number of qubits would increase one-by-one, every 18 months.
Taking into the account the recent prediction of the end of Moores Law, we would never reach a 30 qubits universal
computer.

Applying Moore’s Law to wafer scale integration using 5mm thick 1 meter diameter silicon wafers and
incorporating silicon atoms as stand-alone elements, the computer would have ~ 80 qubits and be implemented in the
year 2100.

ii) Serial and, at the same time, statistical output port. Are quantum computers really faster?

Because of the Born interpretation and the collapse of the wavefunction, when we measure the superposition described
by Eq. 1, we will get the eigenvalues of one of the superposition elements. However, we do not obtain the coefficient ai

values from only one measurement. The value ai
2
 will be obtained by reconstructing the superposition and repeating

the measurement many times and thus empirically determining the probability ai
2
 of occurrence of its superposition

element. In the optimal case (when the probabilities of the different coefficients are equal), for a relative error of ∆  we
need to repeat the whole process

ν =
1

2
2

2

∆
N (4)

times. The practical problem comes in outputting the data. For example, for an accuracy of 0.1% of the value of ai
2
 we

will need 106*22N repetitions of the process. At the 2 qubit case described by Eq. 2, we need to repeat the quantum
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calculation 16 million times to get the 4 numbers represented by these coefficients at an accuracy of 0.1%. If we use
another quantum computer, and we want to extract a somewhat longer list of 1028 numbers as output data, the relevant
qubit number at the output is N=10. Then the required number of repetitions of the calculation process for 0.1% accuracy
is 1 billion!

iii) No cloning theorem: if a number has to be duplicated, it has to be measured by a serial, and at the
same time, statistical inside port.

The title of the problem speaks for itself. We have the same problem as at the output, whenever we have to measure the
data during the calculation process.

iv) Quantum decoherence. Extreme sensitivity to any kind of noise.

This is a topic which has been widely studied. The proposed solutions, error correcting codes, do not improve Shannon
information but reduce speed. The only efficient solution so far seems to be using large quantum energies (photons) or
extremely low temperatures.

v) The constraint of low temperatures.

Most quantum computer solutions need extremely low (sub-milliKelvin) temperatures to avoid decoherence (see iv
above). Use of these temperatures would be very expensive and rules out the use of desktop, laptop and palmtop
computers. At these temperatures, the thermal conductance of any solid material is extremely low. Therefore, even
limited-speed data transfer from/to the quantum unit may cause enough power dissipation to warm it up to temperatures
where the computer does not function properly. This fact may also impose further limits on input/output data speed.

3. ADVANTAGES OF HILBERT SPACE ANALOG (HSA) COMPUTERS

In this section, we address the corresponding properties of universal HSC chips based on analog electronic circuits (HSA
computers) to be described in Section 4.

a) Complexity, size and speed.

HSA computers do have a real parallel output, not only quantum parallelism of the computation. All elements of the
Hilbert space superposition can be read out simultaneously by parallel measurements. There is no collapse of the
wavefunction using HSA processing. It is remarkable that with the same numbers of transistors as in today's PCs, such a
HSA computer could simultaneously manipulate ~ 107 analog numbers corresponding to ~ 22 qubits, using quantum-
parallel architecture. Analog computers have always been orders-of-magnitude faster than a corresponding digital
computer with the same technology. The HSA computer combines this high-speed with other important characteristics,
such as universality and quantum parallelism, which are missing from classical analog computers.

b) Parallel output port.

The data at the output are accessible in a parallel way and the access time is equal to the period time of the analog
oscillators which can be as short as 0.1 nanosec (10-10 sec) using today’s CMOS technology. The real parallelism of the
output is the real stake here.
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c) The no cloning theorem is irrelevant, data can be duplicated.

This title speaks for itself. Standard electronic circuitry is able to duplicate the data in a single follower amplifier step,
with a very high accuracy.

iv) Quantum decoherence is irrelevant.

The noise of analog devices can be well controlled. No cooling or excessive energy dissipation is required.

v) HSA computers can work at room or elevated temperatures.

Because of this fact and the low power dissipation, desktop, laptop or palmtop design are possible.

4. ELEMENTS OF THE HSA COMPUTER

In this section, we very briefly describe a possible solution, which would make the development of a universal HAQ
computer possible using standard analog computational elements. The circuits are designed to directly model the Hilbert
space properties of quantum objects. The practical realization would probably be different; for example, integrator
circuits would be used instead of time derivative circuits for a better stability and noise properties.

4.1 Generating the wavefunction, Fig.1. Using spins allows us to fix the spatial coordinates. The time-dependent part

of the stationary Schrödinger equation 
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energy eigenstate. Circuits providing inputs, initial conditions and coupling are not shown here.

Figure 1. Simplified outline of the simulation of the time dependent part of the stationary solution.
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4.2 The Spin Circuit; simulating a single spin, Fig. 2. A pair of such circuits can form a qubit. E0 is the energy of the
non-perturbed state. The spin variables (±1) of the local and neighboring spin introduce an energy change by the
magnetic field, B, via the Bohr magneton µB  and by spin-spin interaction via the coupling constant K.

Figure 2. Spin Circuit, sketch of simulating a single spin.

4.3 The power spectrum of ψ  at different cases, Fig. 3. The different spin orientations produce different energies
corresponding to different oscillation frequencies. Here, spin interactions are neglected for simplicity. At B≠0, the
spectral peaks are at different frequencies for different spin orientation, the corresponding wavefunctions are orthogonal,
and the spin orientation is easy to measure/identify from the direct product (see next section). These wavefunctions form
the basis of single spin Hilbert space.

Figure 3. The power spectrum of ψ  at different cases, demonstrating orthogonality.
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4.4 Direct product and the quantum measurement, Fig. 4. Measurement of the spin direction is done using the direct
product with the basis wavefunctions, spin-up and spin-down. The direct product of an N-dimensional Hilbert space
vectors is calculated by the parallel application of N single units, one unit is used to each vector component pair.

Figure 4. Direct product (one-dimensional) and the quantum measurement.

4.5. Single qubit circuit, Fig. 5. The circuit of Fig. 5 can also make a superposition of the states of a single spin. The
two outputs represent the two elements of the Hilbert space related to a single qubit. If the qubit is used as a real qubit,
then either C or D is zero and the other is 1 (no superposition).

Figure 5. Single qubit circuit.

4.6 The general quantum system-state in the Hilbert space, Fig. 6. To represent the 2N elements of the Hilbert space
corresponding to N qubits, we need 2N weighting units representing the space vectors and each weighting unit has to
contain N outputs representing the substate of the N qubits in the corresponding product state. For example for two
qubits, we have the following Hilbert space vectors:

|0,0> , |1,1> , |0,1> , |1,0> (5)

Then the general state of the system will be:

Y = C|0,0> + D|1,1> + E|0,1> + F|1,0> C2+D2+E2+F2=1 (6)

where the C,D,E,F weighting factors represent the 4 numbers the quantum computer will parallel-process. The
advantage of the analog simulation method, compared to real quantum systems, is that the C,D,E,F numbers can be read
out parallel, by a single measurement, with a high accuracy, without collapsing the wavefunction. Cloning of states
without measuring them (that is making a direct product) can easily be done.
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Figure 6. The general “quantum” system state in the 4-dimensional Hilbert space of two qubits.

4.7. The universal quantum gate Fig.7 and Fig. 8. To produce all possible unitary operations and entangled states and
to build a universal quantum computer, it is enough to have universal quantum gates that consist of generalized rotations
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and the XOR quantum gate4.  Fig. 7 and 8 show the key elements needed to build the universal quantum gate.

Figure 7. Key component of vector rotation, unitary operations and universal quantum gates.
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An analog multiplier can easily do the cosine attenuation component of the rotation. The realization of the term
containing the complex exponent and the sine component is shown on Fig. 7. The XOR quantum gate is shown in Fig. 8.
The direct product circuits determine the spin state of the inputs. The circuitry uses also two classical logical gates. The
gated amplifier transfers its input signal when a logical 1 is at its Gate input. Otherwise, its output is zero.

Figure 8. The other key component of universal quantum gates: the XOR operation.
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