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ABSTRACT

The notion of a strategy in the multi-player version of the Parrondo game is reviewed. We calculate the gain for
the greedy strategy as a function of the number N of players, including exact analytic results for N < 4 and in
the limit N — oo. We show that the greedy strategy is optimal for N = 1 and N = 2 but not for N = 3. In the
limit N — oo our analysis reveals a very rich behavior including the possibility of phase transitions as a function
of the chosen strategy.
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1. INTRODUCTION

Random or periodic switching between fair games may no longer be fair. This surprising observation, known
under the name of Parrondo paradox, derives from a deeper and less surprising statement in statistical mechan-
ics: a system that undergoes random or periodic switching between two equilibrium dynamics is no longer at
equilibrium. More specifically, equilibrium dynamics is characterized by detailed balance, implicating that any
transition between two states of the system and the reverse transition are equally probable. This very strong
probabilistic symmetry implies in particular the absence of fluxes -the analogue of fairness in the games- but is
in no ways guaranteed by it. Switching between two dynamics with detailed balance can and typically will break
detailed balance and produce fluxes. This phenomenon has been particularly well studied recently in the context
of Brownian motors, with the flashing ratchet as one of the prototypes for rectification of thermal fluctuations.!
Another type of equilibrium was introduced by von Neumann and Morgenstern in their groundbreaking formu-
lation of game theory.? Players are allowed to choose a probabilistic (so-called mixed) strategy in relation to a
pre-specified pay-off table between competing partners. The equilibrium strategy i1s optimal in the sense that no
player can change his strategy without risking to be worse of. More recently, more complicated dynamical and
iterated versions of this set-up have been investigated. We cite the open entry competition for algorithms fighting
on the basis of the iterated prisoner’s dilemma?® (with the surprising feature of the simple tit-for-tat strategy
comes out as a winner), and the theoretical activity with respect to the minority game, in which participants vote
between two alternatives with the aim of belonging to the minority.* Finally we mention the huge engineering
field of plant control, with as main issue the optimization of the output usually in the presence of conflicting
requirements or constraints (cfr. the related issue of finding free energy minima in frustrated systems).
Recently a variation of the Parrondo paradox was introduced that provides a toy model in which all these issues
appear. The Parrondo game is now played by a group of players with the collective aim of maximizing their
total gain. The players have, for each new game, the freedom to choose -after mutual consultation- which one is
played next. They can make this choice using a mixed strategy (i.e. according to some probability distribution).
In engineering parlour the various games can be compared to different operational states of a plant. Fairness
in this context implies that the factory does not function properly -the output is zero- when only one mode of
operation is followed. The question of identifying the optimal strategy turns out to be surprisingly difficult, even
when we restrict ourselves, as we will do here, to the case of Markovian games. The actual state of the players
thus completely determines the probabilities for the events in the next game. At first, one might think that in
this case the ”greedy” strategy, which chooses at each turn the game that will generate the maximum total gain,
will be optimal. It turns out that this is not the case.® The reason is that the choice of the game will also
influence the state of the players, which may compromize the potential gain in the following game. To illustrate
and clarify this issue, we present an exhaustive calculation of the gain for all possible strategies. This can be
done either in the limit of a small number of players -we present results for up to 4 players- or in the limit of
an infinit number of players using a mean field approach. In the latter limit, our analysis reveals a very rich
behavior including the possibility of bifurcations, including bistability and abrupt transitions, in the gain of the
players.
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2. STRATEGY IN THE PARRONDO GAME WITH A SINGLE PLAYER

For simplicity we will use the games from the orginal Parrondo paradox.>” In game A, the player has a

probability p; to win and probability 1 — p; to lose. In game B, the probabilities depend on the capital X (¢)
of the player: when X (¢) is not a multiple of 3, the probability to win is ps, versus 1 — ps for the probability
to lose. On the other hand, for X (¢) a multiple of 3, the probability to win is ps, and the probability to lose is
1 — ps. Both games taken separately are fair for the values p; = 1/2,ps = 3/4 and ps = 1/10.

Before turning to the discussion of strategies involving N players, we first illustrate the idea and results for
the case of a single player. In the original Parrondo game, the type of game (A or B) is chosen at random or
periodically. The main difference for the Parrondo game with strategy is that the player i1s allowed to choose
which game he wants to play. After the game is played, the capital X (¢) is updated according to the outcome, and
one moves to the next game. The main issue for the player is to come up with a good strategy: when selecting
a game, he should use optimally all the relevant information, which for a single player (and Markovian games)
is his actual capital modulo 3, a value which we will refer to as the (internal or reduced) state. In anticipation
of the multi-player case, we will represent this state by a vector, namely [1,0,0], [0, 1,0] or [0,0, 1], depending
on whether the capital modulo 3 is equal to 0, 1 and 2 respectively. The most general (mixed) strategy is then
defined by the probability distribution s[; o o], 8[0,1,0 and s[g,0,1] to choose game A, when being in the respective
states [1,0,0], [0,1,0] and [0,0,1]. Game B is then selected with probability 1 — s. The efficiency of a strategy
will reflect itself in the long-time average gain per game, denoted as G;1. The sub-index refers to the number
of players which is one in the present case. To calculate the latter quantity, we need to study the statistics of
the state of the player as it is induced by his strategy.® The probabilities P 0,01(n), Pro,1,01(n) and P o13(n)
to observe the state [1,0,0], [0,1,0] or [0,0, 1] after playing the n-th game, obey the following Master equation
(using an obvious vector notation):

P(n+1)=R.P(n). (1)

The elements of R are the transition probabilities between the states, see Table 1 for details. When playing
game A and B separately R reduces to either R4 or Rp respectively, given by:

0 1-p1 p1 0 1—ps po

Ry = P1 0 1—p and Rp = P3 0 1—ps | . (2)
1-p1 p1 0 1-ps po 0

The transition matrix describing the (mixed) strategy game is then given by:
RIRA.S—l—RB.(]_—S), (3)

where S is the (diagonal) strategy matrix:

8[17070] 0 0
S = 0 5[0,1,0] 0 (4)
0 0 8[0 0,1]

i)

The average gain upon playing the n-th game is given by:

Gi(n) = Puo0(n) [spo0(2pr — 1) + (1= sp0,0)(2ps — 1)]
+ Po1o(n) [sp0,1,01(2p1 — 1) + (1= sp0,1,00) (2p2 — 1)] (5)
4+ Poo,13(n) [s10,0,11(2p1 — 1) + (1 = sp0,0,17) (202 — 1)] -
In the following we will focus entirely on the long-time steady state results. Hence, we only require the steady
state solution lim,_, ., P(n) = P*' being the normalized eigenvector with eigenvalue 1 of the transition matrix

R:
R.P* = P*t. (6)
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Table 1. List of all possible transitions between the configurations for one player, the corresponding change in capital
and the transition probability.

Transition | Capital | Transition probability
game A game B
[1,0,0] = [0,1,0] +1 P D3
[0,0,1] -1 1—])1 1—])3
[0,1,0]—) [0,0,1] +1 P1 P2
[1,0,0] -1 1—])1 1—])2
[0,0,1]—) [1,0,0] +1 P1 P2
[0,1,0] -1 1—])1 1—])2

Lengthy calculations - that are most easily performed using symbolic manipulators - lead to the following result,
where we used the abbreviations: so = s[1,9,0], 51 = s[0,1,0] and s2 = s[o,0,1]:

Gi = 3[(1+ps(so—1) —piso) (p1s1 — 1) — p2* (1 + 2p3(so — 1) — 2p1s0) (1
—1)(s2 = 1) 4+ p1 (1 + p3(so — 1) + 2p1 (p3 + p1so — paso) s1 — p1(so
+51)) s2+p2(2—51—s2+ps(so—1) (2 —s2 — 2p152 + s1(dp1sa — 1
—2p1)) + p1 (25182 — 51— s2 4 50 (51 + 2p151 — 2 452 + 2p1sa — 4Apisisa)))]/
[3 —p1 (s0 4 s1) 4+ p22(s1 — 1)(s2 — 1) + p1 (p15os1 — s2 + p1(so + 51)s2)
—p3(so — 1)(p1s1 +p1s2 — 1) + p2 (514 52 — 24 p3(so — 1)(s1 + 52 — 2)
+p1 (14 s2 — so(s1 + 52 — 2) — 2s5182))] . (7)

Replacing p1 = 1/2,ps = 3/4 and ps = 1/10, the final result reads:

6 [1080 - 3(81 + 82) - 28182 - 280(81 + 82) + 2808182]

G =
! 169 + 1680 + 381 + 382 + 58182 — 880(81 + 82)

(8)

The optimal strategy, giving the highest value of Gy, is found to be a pure strategy, namely s 9,0 = 1 and
510,1,00 = 5[0,0,1] = 0. The corresponding average gain per game is (1 = 60/185 ~ 0.3243. Not surprisingly,
this strategy has a very simple interpretation: whenever the player is in configuration [1,0,0],i.e. when B is a
losing game, the player chooses game A (with probability 1). Otherwise, that is in the states [0, 1, 0] or [0, 0, 1],
the winning game B is chosen. Hence, the optimal strategy is in this case identical to the greedy strategy
discussed in the introduction. For comparison, note that the original Parrondo game corresponds to the strategy
{5[1,0,07 8[0,1,0], 8[0,0,11} = 11/2,1/2,1/2}, in which the player chooses at random between the two games. For
this strategy the average gain is G = 18/709 & 0.0254, roughly a factor 13 smaller than for the optimal strategy!

3. PARRONDO GAME WITH STRATEGY FOR N PLAYERS

The generalization to N players is now straightforward. At each timestep, a game is choosen and 1s then played
by all players. The strategy that is used to select a game will now depend on the capitals modulo 3 of all players.
The collective state can now be represented by [Ny, N1, No] where N; is the number of players who’s capital
modulo 3 is equal to ¢ = 0,1, 2 respectively (Ng + N1 + N = N). The probability for the players to be in
configuration [Ng, N1, N3] after the n-th game is played, will be denoted by Pin, n, n,](n). A strategy is defined
by the probabilities s;n, n,,n,] to choose game A when being in the corresponding state. The (steady state)
analogue of Eq.(5) for N players is then:

1
GN = N Z P[%D,N1,N2] |:8[N0,N1,N2][2Np1 _N]+ (1_8[N07N17N2])[2N0p3+2(N1 +N2)p2 _N] ! (9)
No,N1,N2

Proc. of SPIE Vol. 5471 111



where (v 1s the average gain per player and per game. Note that the summation over Ny, N1 and Ns runs over
all (N 4+ 1)(N + 2)/2 different configurations. The stationary distribution P[?\tfu,Nl,NQ] is found as the normalized
eigenvector of eigenvalue one of the transition matrix R, which is now an (N 4+ 1)(N +2)/2 x (N + 1)(N +2)/2
matrix.
To illustrate the procedure, consider the N = 2 player game. In this case, there are a total of 6 different
configurations, namely:
[2,0,0] , [L,1,0] , [1,0,1] ,
[0,2,0] , [0,1,1] , [0,0,2]
Table 2 summarizes all possible transitions between the configurations, the corresponding change in capital, and

the transition probability.
The matrix Rg 1s thus:

(10)

0 0 0 (1—p2)?  p2(l —po) P2p2
0 p3(1 — p2) P23 0 (1=p2)* 2p2(1—p2)
Rp — 0 (1 —p2)(1 — p3) p2(1 — p3) 2p2(1 — p2) P2p2 0 . (11)
P3P3 P2p3 p3(1 — p2) 0 0 (1—p2)?
2ps(1 — ps) 0 (1 —p2)(1 — p3) 0 p2(1 — p2) 0
(1—ps3)? p2(1 — p3) 0 Pa2p2 0 P2p2

R4 is found by replacing p, and ps in Rpg with p;. The calculation of the stationary distribution P*' =
(P[Zio,o]’ P[it@,o]’ P[it,o,u’ P[f)t,z,o]’ P[f)t,1,1]’ P[%tyoyz])T can be handled by a symbolic manipulator: The final re.sult for
(5 1s rather lengthy and not reproduced here. An exhaustive search over all pure strategies allows to identify

the following optimal strategy:

{5[2,0,0], 5[1,1,0], 8[1,0,1]s S[0,2,0]5 §[0,1,1]5 5[0,0,2]} = {L 1,1,0,0, O}a (12)

and the corresponding value for Go = 1312/5913 & 0,2219. Furthermore this strategy is again identical to the
greedy strategy: whenever the average gain for playing game B is negative, game A is choosen. This is the case
for the configurations [2,0,0],[1,1,0] and [1,0, 1], with an expected gain in game B equal to —8/5,—3/10 and
—3/10 respectively. Note also that the average optimal gain is only about 2/3 of that of a single player. This
is obviously due to the fact that the same game has to be chosen for all players leading to a conflict of interest
and reduced pay-off. Note finally that for the original Parrondo game, s = 1/2, collective effects are immaterial
and one recovers the well know average gain Gy = 18/709.

So far we found that the greedy strategy is optimal for N = 1 and N = 2. This is, as we proceed to show
next, no longer the case for N > 3. We first focus on the case N = 3. It is straighforward to repeat the above
calculations (involving now 10 x 10 matrices) but the procedure and final expressions are very lengthy so we just
review the salient results. The different configurations are now:

[3’0’0] 3 [2’]"0] 3 [2’0’1] 3 [1’2’0] 3 [1’1’1] bl

102 . [030 . [021 . (012 . [0.0.3] (13)

Referring to the ordering of the states in (13), the greedy strategy corresponds to {1,1,1,0,0,0,0,0,0,0} for
which we find an average steady state gain per game and per player equal to:

2317431670848

G5 = 1664732533395

~ 0.1656 . (14)

However, the strategy {1,1,1,0,0,1,0,0,0,0}, which differs from the greedy strategy in choosing the neutral
game A rather then the winning game B in configuration [1,0,2] has a larger gain, namely:

(i3 = 45185912531/86483373591 & 0.1742. (15)

In fact, the greedy strategy is only the third best one. The second best strategy is {1,1,1,0,1,1,0,0,0,0},
with average gain G5 = 5984181363/11678660585 = 0.1708, differs in two configurations from the greedy one.
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Table 2. List of all possible transitions between the configurations for two players, the corresponding change in capital
and the transition probability.

Transition | Capital Transition probability
game A game B
[2,0,0] = [0,2,0] +2 pip1 D3P3
0,0,2] —2 (1—])1)2 (1—])3)2
0,1,1 0 2])1(1—])1) 2])3(1—])3)
[1,1,0] = [0,1,1 +2 ip D2ps
[1,0,1] | -2 (I=p1)* | (1=p2)(1—ps)
[1,1,0] 0 pi(l—p1) p3(l — pa2)
0,0,2 0 p1(l—p1) p2(1 — p3)
[1,0,1] = [1,1,0 +2 P1p1 Paps
[0,1,1] | -2 (1=p1)* | (1=p2)(1—ps)
[0,2,0] 0 p1(l—p1) p3(1 —p2)
1,0,1 0 p1(l—p1) p2(1 — p3)
[0,2,0] —[0,0,2 +2 LD Ppap2
[2,0,0] —2 (1—])1)2 (1—])2)2
1,0,1 0 2])1(1—])1) 2])2(1—])2)
[0,1,1] = [1,0,1 +2 P1p1 pap2
LL0)| -2 | (1—p)? (1= pa)?
2,0, 0] 0 pi(l—p1) p2(1 —p2)
0,1,1 0 pi(l—p1) p2(1 —ps)
[0,0,2] —12,0,0 +2 Pip1 pap2
0.2,00| -2 | (1-p)? (1= pa)?
[LLO] 0 2])1(1_])1) 2])2(1_]72)

The fourth best strategy (average gain G35 = 284867630136/578009589745 =~ 0.1643) is {1,1,1,0,1,0,0,0,0,0}.
As a usefull check of our calculations, we also note that we find three different strategies that give an average
gain of 0, namely {0,0,0,0,0,0,0,0,0,0},40,0,0,0,1,0,0,0,0,0} and {1,1,1,1,1,1,1,1,1,1}. The first and the
last strategy correspond to a choice of uniquely playing game B and game A respectively, and the zero gain
reflects that these games are fair. The second strategy corresponds to playing game B all the time except in
configuration [1,1,1], where game A is chosen. The explanation why this does not affect the average gain is
that game A will, when the players are evenly spread over the three states, maintain -statistically speaking- the
uniform distribution over these states.

The analytic results for N > 4 are unwieldy, so we have resorted to numerical simulations to further investigate
the performance of the greedy algorithm as N becomes larger, cf. Fig. 1. As expected Gy decreases further with
increasing N and appears to converge for N — oo to an asymptotic value larger than that of the random game.
This suspicion will be confirmed by the analytic evaluation of limy_, o, Gx for the greedy strategy, presented in
the next section.

4. MEAN FIELD PARRONDO STRATEGY

The above calculations become more and more involved as N becomes larger, but a significant simplification takes
place in the limit N — oo. In this limit we introduce the fractions g = No/N, 1 = N1/N, and x5 = Na/N,
of players that have a capital equal to 0, 1, and 2, modulo 3 respectively. Note that zy 4+ 27 + 2 = 1. Once
the next game to be played has been selected, the law of large number stipulates that these quantities obey a
determistic equation of evolution identical to the equation for the probability of a single player. Hence for game
A one has :

x(n+1) =Ra.x(n), (16)
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Figure 1. Comparison of the greedy strategy (x) with the random strategy (o) for a different number of players. The
data for N < 3 is obtained from analytical calculations, those for N > 4 are obtained from simulations. The arrow points
to the mean field result G, = 2416/35601 =~ 0.06786

with R4 given by (2). This mapping has a unique and stable fixed point z3 = zi! = #4 = 1/3. The dynamics
when game B is chosen is as follows

x(n+1) =Rp.x(n), (17)

with Rp given by (2). The unique and stable fixed point of this mapis : % = 5/13, x¥ = 2/13, 28 = 8/13. The
separate dynamics are thus linear maps converging exponentially fast to their respective unique fixed point. Non-
trivial results arise when we introduce a strategy. In full analogy to the previous discussion, such a strategy is
defined by the state dependent probability s[,, »,] to select game A (when being in state [z, 1, 22 = 1 —xo—x1]).
1 — S[z,,z,] 18 the probability for game B. The dynamics for the strategy game is then as follows:

x(n+1)=[c(n)Ra + (1 —c(n))Rp] .x(n). (18)

where o(n) is a random variable equal to 1 with probability s, »,; and 0 otherwise. We conclude that the
resulting dynamics is in general a random and nonlinear map. Two limiting cases are worth mentioning. In the
special case that s[zg, #1] is a constant independent of [zg, 21], eq. (18) represents a random linear map, a case
which has received considerable attention in the literature on fractals since the invariant distibution is typically
fractal or multi-fractal.® As an illustration we reproduce in Fig. 2 the numerically obtained support of the
two-dimensional steady state probability in the case sp, »,] = 1/2.

To make further progress, we turn to the other case which is of more interest to us here, namely we restrict
ourselves to the case of pure strategies. A strategy is now defined by a boundary in the (xy, #1)-plane, separating
the region where game A is played, s[;,,»,] = 1, from the region where B is played, s[;, »,] = 0. The mapping
(18) is then no longer random but becomes piece-wise linear. To fix the ideas and for comparison with previous
results, we first focus on the greedy strategy in which game A is played when the expected gain in B is zero or
negative, i.e., when xq(2ps — 1) + 21 (2p2 — 1) + 22(2p2 — 1) < 0. The boundary separating game A from game B
is thus a straight line z9 = (1/2 — p2)/(ps — p2) or xg = 5/13 for the fair game choice p» = 3/4 and ps = 1/10.
Game A is selected for ¢ > 5/13. To find the invariant state that is reached in the long time dynamics, we
make the following observations. First, both pieces of the map are contracting. Hence the long-time dynamics
has to take place on a subset of measure zero, possibly a fixed point, a periodic orbit or a chaotic trajectory. The
second observation is that the fixed point of the A dynamics, ' = 1/3, lies outside the region in which game
A is played, while the fixed point of the B dynamics, 2% = 5/13, lies exactly on the boundary. We conclude
that neither of them can be a stable fixed point of the greedy dynamics. The third observation is that any
point belonging to the A region, 2y > 5/13, is, upon playing game A, mapped onto the B region, implying that
game A is directly followed by game B. A fourth similar observation can be made if we divide the B region,
zo < 5/13, into subregions B’ and B”| indicated by the dashed line in Fig. 3: B’ is mapped onto B”, and B”
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Figure 2. Two dimensional fractal support of the steady state probability distribution in the case s[;, ;1 = 1/2. The
blown up insets illustrate the self-similarity of the fractal.

onto the A region. We conclude that the greedy strategy leads to a game sequence built out of AB and/or ABB
subsequences. One can now proceed to study the existence and stability of the fixed points corresponding to limit
cycles of increasing complexity, e.g., ... ABABAB ..., ... ABBABBABB ..., etc.. For example, the limit cycle
...ABABAB ... would correspond to an alternation between the fixed points of the matrix R 4.Rp and Rg.R 4.
These fixed points are unique and stable, namely (3/13,1/13) going over by the map A into (5/13,6/13), and
back by the map B. Both points lie however in the region where the ”wrong” game is played, and therefore
this cycle is not compatible with the greedy algorithm. The only stable limit cycle compatible with the greedy
dynamics that we could identify is the following one of period three:

{15871/35601, 6173/35601}

A
{9865/35601, 14714/35601}
| B (19)
{11945/35601, 3742/35601}
| B
This cycle corresponds to a game sequence ... ABBABBABB .... The corresponding average gains at each

of these steps are 0 — 4976/35601 — 2272/35601 with overall average G, = 2416/35601 ~ 0.06786, in perfect
agreement with the numerical results, cf. Fig. 1.

We turn to a last question of interest, namely whether there exists a strategy that beats the performance of the
greedy strategy when N — oo. Building on our experience with the previous analysis, where the asymptotic
dynamics are characterized by a limit cycle, we investigate this matter by proceeding in the reverse manner:
we first identify a limit cycle with an average gain larger than the greedy strategy, and proceed to construct a
strategy by choosing the boundary with the various points of the limit cycle sitting in the appropriate region of
the (x0,21) plane. The first problem was already solved in Ref. 9, where periodic sequences (such as for example
...ABBABBABBABB ...) of the single player game were studied. After an exhaustive search, for sequences
with a period length up to 12, the period-5 sequence ABABB comes out as the best. The five points of this
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Figure 3. Sketch of the (zo,#1)-plane. Game A is played in the gray region, game B in the white region. The fixed
points of the A and B dynamics are shown by a *. Left panel: the full vertical line at o = 5/13 shows the boundary line
for the greedy strategy. The period-3 limit cycle is indicated by the 4 symbol (the index refers to the order in which they
follow each other). Right panel: the full vertical line at zo = 0.334 shows the boundary for the better strategy, while the
dashed vertical line at o = 5/13 shows the boundary line for the greedy strategy. The period-5 limit cycle is indicated
by the @ symbol (the index refers to the order in which they follow each other).

limit cycle are:
{4684919/9549529, 1762493/9549529}
{2432305/95495;9,?893518/9549529}
{3391159/95495;9,?049157/9549529}
{3079185/95495;9,f250186/9549529}
{2727665/95495%9,262958/9549529}
| B

with corresponding average gains at each of these steps:
0 — 1612768/9549529 — 0 — 771824/9549529 — 2272/9549529 ,

and the overall average gain given by G, = 3613392/47747645 ~ 0.07568. By plotting the points of the limit
cycle in the (xg,#1) plane, it becomes immediately apparent that this period-5 limit cycle is realized when the
boundary line of the greedy strategy is shifted to the left, i.e., to a value x¢ €]1/3,11945/35601[. The lower
boundary x¢ > 1/3 is needed to ensure that the fixed point of A is still in the region where B is played, while the
condition #¢ < 11945/35601 destroys the period-3 limit cycle of the greedy algorithm. That this cycle is indeed
realized 1s confirmed in the simulations, cf. Fig. 4. With the boundary at zg, the interpretation of the new strategy
is straighforward: it 1s a more intelligent greedy strategy, in which game A is now played whenever the expected
gain of B is below 1/2 — (13/10)x¢ (this result is obtained from eq. (5) with {s{o 1,0, 5[0,1,0], S[0,1,01} = 10,0, 0}
(since game B is played) and Py g g)(n) — xo).
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Figure 4. Time evolution of the average capital (per player) of a collection of 10000 players, using the more intelligent
greedy strategy (with the boundary line at zo = 0.334). It is clear that the gain received by the players is periodic in
time: after five timesteps, the same gain is obtained. This cycle can be identified by the ABABB game sequence, as
shown in the inset. Note that fluctuations in the gain are still significant for 10000 players.

5. DISCUSSION

We close with some final remarks. First it should be clear from the mean field analysis that the gain is usually
changing in function of an adopted pure strategy in a abrupt way, since cycles appear or disappear when the
constituting points move into or out of the appropriate region. For example, upon moving the decision boundary
starting from the greedy strategy at xp = 5/13 to smaller values, the performance of the plain greedy algorithm
will persist until the increased gain of the intelligent version is abruptly reached when zy becomes smaller
than 11945/35601. Second, we note that non-periodic sequences, generated by various chaotic time series, were
considered in Ref. 10. We have not discussed these sequences here because they do not seem to have a simple
strategic interpretation, and require for their generation, as far as we can see, fractal boundaries between the A
and B regions. Third, there is the possibility for coexisting attractors. In this case, the gain will depend on the
initial condition. Such a situation occurs for example when the boundary line of the greedy strategy is shifted
to the left to a value x¢ €]11945/35601,3391159/9549529[. In this case, both the period-3 and period-5 limit
cycle can occur. Fourth, we were only able to answer the question of the optimal strategy for N = 1,2 and 3.
The identification of the optimal strategy for N — oo is an open problem, including the question of whether
or not it has a fractal nature. This difficult question may be answered by introducing further simplifications
in the Parrondo game. A very promising primary model involving two rather than three states was recently
introduced,' where such an analysis may indeed be performed.
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