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I. INTRODUCTION  
 

Nowadays the interest in high power semiconductor devices is growing for applications such as telemetry, 
lidar system or free space communications. Indeed semiconductor devices can be an alternative to solid state 
lasers because they are more compact and less power consuming. These characteristics are very important for 
constrained and/or low power supply environment such as airplanes or satellites. 

Lots of work has been done in the 800-1200 nm range for integrated and free space Master Oscillator Power 
Amplifier (MOPA) [1]-[3]. At 1.5 µm, the only commercially available MOPA is from QPC [4]: the fibred 
output power is about 700 mW and the optical linewidth is 500 kHz.   

In this paper, we first report on the simulations we have done to determine the appropriate vertical structure 
and architecture for a good MOPA at 1.58 µm (section II). Then we describe the fabrication of the devices 
(section III). Finally we report on the optical and electrical measurements we have done for various devices 
(section IV).       

 
II. DEVICES SIMULATIONS  
 
A. MOPA architecture 
 

A MOPA is composed at least by a laser and an amplification section. In the framework of the FP7-Space 
Britespace project we have to develop an integrated MOPA composed of a distributed feedback laser (DFB), a 
modulation section and a semiconductor optical amplifier (SOA) [5]. The DFB laser is the natural candidate to 
obtain a single-mode emission laser with a narrow optical linewidth. In the past, we have already developed 
DFB lasers which exhibit high output power (> 150 mW) with an optical linewidth better than 300 kHz [6].  

The modulation section has to allow a modulation bandwidth about 15 Mbit/s with 10 dB extinction ratio. A 
simple way is to use gain modulation in a SOA. Compared with electro-absorption modulator (EAM), which 
requires a specific material (photoluminescence peak shifted compared with the laser active zone), we do not 
need any specific active zone for the SOA.  

The MOPA maximum output power will be given by the saturation power of the SOA. In order to obtain an 
output power as large as possible, we have decided to use a flared SOA. Indeed the active zone enlargement 
allows decreasing the power density and increasing the maximum output power [7].  

The standard configuration for a monolithic MOPA is to integrate the different sections in straight line 
(Fig. 1(a)) [4], [8]. The main advantage of this architecture is its simplicity. The main drawbacks are the 
reflections at the facets (even with appropriate antireflective coatings) or at the interfaces between integrated 
elements which can produce multicavity effects, disturbance of the DFB laser due to large reflections or lasing 
effect in each section. The impact of these reflections on the power or the optical spectrum is described in [8]. 

In order to decrease the reflections at the facets, a simple method consists in tilting the device with regard to 
the facets (Fig. 1(b)) [9]. This technique is very common for SOAs. The main drawback is the difficulty to make 
efficient high reflective coatings on the backside DFB laser facet due to the tilt.      

Another promising architecture is the bended MOPA (Fig. 1(c)) [10]. For our 3 sections MOPA, the DFB 
laser is straight, the modulation section is bended and the flared SOA is tilted. This architecture seems ideal 
because it allows reducing the reflections at the SOA facet thank to the SOA tilt and the backside DFB facet 
coatings can be well controlled. The main uncertainty concerns the losses due to the bend.        
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(c) Bended MOPA 
Fig. 1. Three architectures: straight MOPA (a), tilted MOPA (b) and bended MOPA (c). 

 
B. Eigenmode of the cavity 
 

At 1.55 µm the main losses in an Indium Phosphide (InP) semiconductor structure are due to the intervalence 
band absorption (IVBA) in the p-doped layers. To enhance the optical power it is necessary to decrease the 
confinement, which is the overlap between the optical mode and a given surface, with the lossy p-doped layers. 
An innovative approach developed by the MIT Lincoln Lab at various emission wavelengths, consists in using 
an asymmetrical cladding structure [7]: a large slab inserted between the active zone and the substrate allows 
attracting the optical mode and taking it away from the p-doped layers. They have called this structure SCOW 
for Slab Coupled Optical Waveguide. The slab optical index has to be between the active zone index and the 
substrate index. Fig. 2(a) shows the optical eigenmode of an InP semiconductor cavity with a standard vertical 
structure. The optical mode is centered on the quantum wells (QWs), represented by the dashed line, and 
equally spread between the p-doped and the n-doped InP layers. Fig. 2(b) shows the optical eigenmode of a 
cavity with a slab layer structure (asymmetrical cladding structure). In this case, the optical mode is not centered 
on the active zone but below the active zone. The optical mode is mainly spread on the n-doped slab and only a 
little part of the mode is on the p-doped layers. 

The corresponding optical parameters simulated with homemade software which calculates the optical 
eigenmode are given in the Tab. 1. We clearly see the impact of the 2 µm thick slab: the confinement on the 
QWs (ΓQW) is divided by 3.5 and the confinement on the p-doped InP (Γp-InP) by almost 6. The large overlap 
reduction with the p-doped layers is responsible for the optical losses decrease. The QWs confinement decrease 
will lead to a reduction of the structure modal gain: it will be necessary both to ensure an adequate overlap with 
the QWs during the cavity simulation stage to maintain enough modal gain and to use long cavities. The 
asymmetrical cladding structure allows enlarging the optical eigenmode: we can see this effect on the vertical 
divergence (Tab. 1). This point is very important because a large optical mode is equivalent to an optical beam 
with a low divergence which is in favour of a better coupling efficiency.  

For the asymmetrical cladding structure, the choice of the slab material is very important because it sets the 
optical index of the slab. We see in Fig. 3 the strong impact on the cavity eigenmode for a variation of the slab 
optical index. For a slab optical index of 3.20, the eigenmode is centered on the active zone and the slab has a 
small impact on the eigenmode (Fig. 3(a)). When the slab index is increased to 3.25, the eigenmode is enlarged 
and strongly deformed by the slab (Fig. 3(b)). For a higher slab optical index (n = 3.31), the eigenmode is 
centered in the slab layer and the optical mode is not well confined (Fig. 3(c)). 

The slab optical index needs to be between the active zone index (nAZ ≈ 3.5) and the substrate (nInP = 3.16). 
There are two possibilities for the slab realization. The first one, which is the most intuitive, is to use a bulk or 
massive material with the appropriate optical index. It can be for example an InGaAsP material with the 
appropriate photoluminescence peak [7], [11]. All the eigenmode simulations plotted in Fig. 2 and 3 have been 
done for structures with massive slab. The drawback of this solution is that we need to develop in epitaxy a 
specific material with the required optical index, for example an InGaAsP quaternary, which leads to lots of 
epitaxy calibrations and testing. Another drawback is that the quaternary material has bad thermal conductivity 
behaviour which can be an issue for high power devices. The second option is to replace the bulk material by a 
“dilute” material [6]. A dilute material is composed of thin layers of various materials (typically two materials): 
the optical index of the dilute material is the average of the various material indexes weighted by their thickness 
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(Fig. 4(a)). The interest of this solution is that we can use standard material such as InP and the barrier material 
to make the slab layer: it is not necessary to develop any quaternary materials. We can also modify the slab 
index by modifying the relative thickness of the layers. It leads to more degrees of freedom for the design of the 
vertical structure. This point is demonstrated in Fig. 4(b) and (c) where we have plotted the optical eigenmode 
for 2 structures with the same total slab thickness but with different relative thicknesses of the InP and the 
InGaAsP. In Fig. 4(b), for a given structure, the mode is centered just below the active zone. In Fig. 4(c), we 
have maintained the total slab thickness but we have increased the thicknesses of the InGaAsP layers and we 
have decreased the thicknesses of the InP layers. This leads to an increase of the average slab optical index 
because the index of the InGaAsP is higher than the InP. We can notice that the eigenmode has moved to the 
bottom and is now centered in the middle of the slab because it is attracted by the higher slab index. 

 

Ridge

n-InP

p-InP

QW

 

Slab layer

n-InP

p-InPQW

 
(a) No slab (typical epitaxial structure) (b) 2 µm thick slab 

Fig. 2. Optical eigenmode for structures without slab (a), and with a 2 µm thick slab. 
 

Tab. 1. Simulated optical parameters for a standard structure and an asymmetrical cladding structure.   
Parameters Standard structure Asymmetrical cladding structure 
ΓQW 7.5 % 2.1 % 
Γp-InP 31.7 % 5.6 % 

Estimated optical losses 12.5 cm-1 3.6 cm-1 
Vertical divergence (FWHM) 34.6° 29.2° 

   

nSlab = 3.20

Ridge

Substrate

Active zone

 

nSlab = 3.25

Ridge

Substrate

Active zone

 

nSlab = 3.31

Ridge

Substrate

Active zone

 
(a) nslab = 3.20 (b) nslab = 3.25 (c) nslab = 3.31 

Fig. 3. Optical eigenmode for asymmetrical cladding with 3 different slab materials. 
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1.05 µm

Buffer
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InGaAsP 1.05 µm

Dilute slab InP and
InGaAsP 1.17 µm

Buffer

InP 0.91 µm
InGaAsP 1.17 µm

InP 0.91 µm
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Active zone

 

  
(a) (b) (c) 

Fig. 4. Principle of a dilute slab (a). Optical eigenmodes for 2 epitaxial structures with the same total slab 
thickness but different InP/InGaAsP thicknesses (b), (c). 
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C. Bend simulation 
 

In the bended MOPA architecture, the modulation section makes the transition between the straight DFB laser 
and the tilted SOA. The modulator curvature radius is determined by the length of the section and the tilt of the 
next section (flared SOA) which is set to 7°. It is difficult to directly simulate a bend because the output of the 
bend is tilted compared with the input of the bend. A useful method consists in simulating a S-bend (2 bend 
head to foot): in that case there is no tilt between the input and the output. We have simulated the propagation 
losses due to the S-bend for various section lengths by using the Beamprop software. The results are 
summarized in Tab. 2 and Fig. 5. The launched mode is the eigenmode of the straight section. For each 
configuration, the simulation on the left represents the propagation of the optical mode in the XZ plane (the Y 
position is the active zone). The curve on the right is the overlap between the propagated mode and the launched 
eigenmode.  

Fig. 5(a) is a plot of the simulation of the eigenmode propagation in a 1 mm long straight section. The 
propagation is without any propagation losses, which means that our eigenmode calculation is correct. Fig. 5(b)-
(d) are the plots for the S-bends with various lengths (1.0, 1.4 and 2.0 mm). For the 1 mm long S-bend the losses 
are significant (-4.56 dB): we can see on the Fig. 5(b) the optical power leakage along the bend. For the 2 mm 
long S-bend, we have obtained optical losses lower than 1 dB (Fig. 5(d)). In the bended MOPA architecture we 
just have half a S-bend. With a 1 mm long bended modulator, the propagation losses should be around 0.5 dB. 
We will use this length for our MOPA. 

 

    
(a) 1 mm long straight 

section 
(b) 1.0 mm long S-bend 

section 
(c) 1.4 mm long S-bend 

section 
(d) 2.0 mm long S-bend 

section 
Fig. 5. Propagation of the optical eigenmode on a straight section (a) and S-bend with various lengths: 1 mm 

(b), 1.4 mm (c) and 2 mm (d). 
 

Tab. 2. Propagation transmission and losses for various S-bend lengths.   
S-bend length (mm) Radius of curvature (mm) Transmission (%) Losses (dB) 

1 4.1 35 -4.56 
1.4 5.7 62 -2.07 
2 8.2 86 -0.66 
3 12.3 94 -0.27 

 
III. ELECTED STRUCTURE AND DEVICES FABRICATION  

 
A. Elected design 
 

We have designed our asymmetrical cladding structure using a dilute slab composed of InP and InGaAsP 
(λg = 1.17 µm) in order to avoid any material development. Indeed this quaternary material is the same as the 
barrier material. The slab thickness (1.62 µm) has been optimized to decrease the optical confinement within the 
p-doped layers as much as possible and to maintain the confinement within the QWs around 2%. This level of 
confinement is necessary to maintain a low threshold current, a low RIN and a quite large relaxation frequency.  

 
B. MOPA architecture 
 

The multiple quantum wells DFB structure was grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on 
n-type InP substrates. The active region contains six 8 nm thick compressively (0.85%) strained InGaAsP 
quantum wells and five 10 nm thick InGaAsP (λg = 1.17 µm) barriers. The photoluminescence peak was at 
1.57 µm. After a first epitaxy, first order gratings were defined by e-beam lithography and inductively coupled 
plasma (ICP) reactive ion etching. An atomic force microscope (AFM) image of the grating after ICP etching is 
plotted in Fig. 6. The InGaAsP grating layer is positioned above the active zone and the grating layer thickness 
is optimized in order to obtain a coupling strength ΚL ~ 1.4. This low value of ΚL should limit spatial hole 
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burning effects and the associated optical power saturation. Re-growth of p-doped top cladding was then also 
done by MOVPE. The dual-channel ridge-waveguide used for the DFB laser and the modulator section was 
formed by ion beam etching followed by wet chemical etch and proton insulation. The ridge-waveguides are 3.0 
µm wide. This value was found to minimize the thermal saturation while preserving lateral single-mode 
operation. A 4 µm thick gold layer is deposited on the surface as heatsink and to allow electrical bonding in 
safer conditions. Bars were cleaved to form 4 and 5 mm long devices. Facets were high reflectivity (HR) coated 
on the DFB laser backside facet and anti reflectivity (AR) coated on the SOA facet. Chips cleaved from the bars 
were mounted p-side up on aluminum nitride (AlN) submounts. A thermistor was glued on the submount to 
better control the chip temperature. A drawing of a tilted MOPA soldered on the AlN submount is shown in Fig. 
7(a). Fig. 7(b) is a picture of a bended MOPA mounted on the AlN submount. 

 

200 nmAFM  

InGaAsP

Hole (buried during 
the regrowth)

 
(a) AFM mapping (a) AFM cross section 

Fig. 6. AFM measurements on the Bragg grating before the epitaxial regrowth. 
 

Common ground:
-DFB laser
-modulator
-flared SOA

Contact + 
DFB laser

Contact + 
modulator

Contact + flared SOA

Thermistor

4 
m

m

8 mm

2.1 mm3.1 mm 1.6 mm 0.2 mm

2 m
m

 

Thermistor

AlN
submount

Alumina
chip

 
(a) Drawing of a tilted MOPA mounted on the AlN 

submount  
(b) Picture of a bended MOPA mounted on the AlN 

submount 
Fig. 7. MOPA mounted on AlN submount. 

 
IV. DEVICE CHARACTERIZATION  

 
All the MOPA measurements have been done on devices mounted on AlN submounts. The current was 

injected through electrical probes for the DFB laser and the modulator and through large metallic stripes for the 
flared SOA in order to reduce the electrical resistance and to allow high current values. The submount 
temperature was controlled thanks to the thermistor glued on the submount. All the measurements have been 
performed at 18° C.  

The tilted MOPAs are not operational, because the DFB laser is not lasing. In the following sections, we will 
focus on the straight and bended MOPAs.   

 
A. Straight MOPA 
 

We have first tested the straight MOPAs. Even if we have obtained hundreds of mW at the output of the 
device, we have rapidly seen the drawbacks of this architecture. First we have observed multimode behavior on 
the optical spectrum: for example in Fig. 8(a) we can see some peaks around 1582 nm (grating wavelength) and 
also some optical modes around 1595 nm. This multimode behavior, which is varying as a function of the 
current on the different sections, is not recommended for system applications. For some triplets of current (DFB 
laser, modulator and flared SOA) the optical spectrum seems single-mode but when we characterize electrically 
the signal we see some peaks at different frequencies (Fig. 8(b)). These peaks are the beatings between optical 
modes. In Fig. 8(b), we have the fundamental tone between 5 and 6 GHz and the 2nd and 3rd harmonics. The 
frequency beatings change when the DFB current is changed.    
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As expected, the straight architecture is not relevant due to instability in the optical spectrum. These 

instabilities make the use of the device in a lidar system not possible. 
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Fig. 8. Optical spectrum (a) and electrical spectrum for a straight MOPA (b). 
 

B. Bended MOPA 
 

We have then characterized bended MOPAs. For a 4 mm long MOPA (1 mm DFB laser, 1 mm modulator and 
2 mm flared SOA) the maximum output power is about 430 mW for bias currents of 400 mA in the laser, 
300 mA in the modulator and 3 A in the flared SOA (Fig. 9(a)). The corresponding optical spectrum is plotted 
in Fig. 9(b). The side mode suppression ratio (SMSR) is superior to 45 dB. The output power is limited by the 
flared SOA thermal saturation. This saturation appears at low current density (2 kA.cm-2) compared with similar 
structures such as [10] (4.64 kA.cm-2). We think that this limitation is due to fabrication issue during the p-side 
contact annealing. 

The optical spectrum for various flared SOA bias currents is plotted in Fig. 10(a). We have observed very 
stable single-mode operation when varying the flared SOA and the modulator bias currents. We do not see 
fluctuations of the wavelength due to reflections. Fig. 10(b) is the comparison of the optical spectrum from the 
DFB laser backside facet (DFB facet, blue curve) and from the flared SOA output facet (SOA facet, red curve). 
The shape of the curves is the same, the flared SOA just acts as an amplifier and does not modify the peak 
wavelength.   

 

0

100

200

300

400

500

0 0,5 1 1,5 2 2,5 3 3,5

O
p

ti
ca

l p
o

w
e

r 
(m

W
)

Flared SOA current (A)

Power (mW)

 

-70

-60

-50

-40

-30

-20

-10

1533 1553 1573 1593 1613 1633

A
m

p
li

tu
d

e
 (

d
B

m
)

Wavelength (nm)

IDFB = 400 mA, 

Imod = 300 mA, 

ISOA = 3 A

 
(a) (b) 

Fig. 9. Power as a function of the flared SOA current (a) and optical spectrum (b) for a bended MOPA. 
 
The optical linewidth is an important parameter for some applications such as coherent lidar or free space 

communications. We use the delayed self-heterodyne method with 1 km SMF length to characterize our device 
and a low noise current source for the laser bias current. The optical linewidth is fitted with a Lorentzian curve: 
the FWHM extracted value represents the intrinsic linewidth of the DFB laser [6]. The linewidth as a function of 
the DFB laser current has been investigated (Fig. 11(a)) for a 5 mm long device (1 mm DFB laser, 1 mm 
modulator and 3 mm flared SOA). As for single DFB, the optical linewidth decreases when the DFB current 
increases. The photon density increase in the laser cavity when the bias current is increased is responsible for 
the optical linewidth reduction (the linewidth is inversely proportional to the photon density). Fig 11(b) is the 
evolution of the optical linewidth for various flared SOA currents.      

We have measured the relative intensity noise (RIN) of the same bended MOPA from 0.1 to 40 GHz 
(Fig. 12(a)). The relaxation frequency remains inferior to 5 GHz even at high DFB bias current. Fig. 12(b) is a 
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comparison of the RIN measured at the DFB laser backside facet (straight lines) and at the SOA output facet 
(dashed lines). The position and the level of the relaxation frequency are the same. 
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Fig. 10. Optical spectrum for different flared SOA current (a) and optical spectrum from both facets (b) for a 
bended MOPA. 
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Fig. 11. Optical linewidth as a function of the DFB laser current (a) and the flared SOA current (b).  
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Fig. 12. RIN as a function of the DFB laser current (a) and RIN from both facets (b). 
 

V. SUMMARY  
 
In this paper, we report the design, the fabrication and the characterization of a monolithic semiconductor 

MOPA device at 1.58 µm. The objective was to develop a 3 sections device including a DFB laser, a 
modulation section and a high power amplifier. We have designed and fabricated 3 architectures: straight, tilted 
and bended. The bended and the straight architectures have been characterized and compared.  

The straight MOPA suffers from optical spectrum instabilities most likely due to reflections at the facets and 
at the section interfaces. These components are not suitable for systems such as lidar where a very stable peak 
wavelength is required. We have performed more complete characterizations on bended MOPAs. The 
wavelength stability is largely enhanced thanks to the reduction of the optical feedback. We have demonstrated 
more than 400 mW output power at 1.58 µm with a SMSR superior to 45 dB. The main limitation for having 
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much power seems due to a bad ohmic contact in the fabrication which leads to a reduction of the reachable 
current density. We have obtained optical linewidth of about 5 MHz at FWHM which is compatible with our 
application of CO2 detection lidar.   
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