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ABSTRACT 

The Ultra Fine Sun Sensor (UFSS) on board the HINODE solar observing satellite is one of the most successful sun sensors. 

It is the linear CCD sun sensor with a special detection method using multiple slits, called the periodic reticle. The angular 

resolution of 0.14 arcsec in the noise equivalent angle (NEA) and 1 arcsec stability were achieved by the sensor head, of 

1.2 kg weight. The concept of the detection method and processing algorithm of the Sun’s direction is described. The 

system is modeled and the dynamic response of the system is characterized by the first-order lag system. By utilizing this 

characteristic, a resolution improvement three times higher can be expected by adjusting the parameters with a small 

modification to the HINODE UFSS processing algorithm. The design for a new UFSS for the next generation solar 

observation satellite, SOLAR-C, shall include these modifications. The thermomechanical design is also reviewed to 

improve stability and a design policy is obtained. 
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1. INTRODUCTION 

The Ultra Fine Sun Sensor (UFSS), comprising a 1.2 kg sensor head, is the linear CCD sun sensor and utilizes a special 

detection method that involves multiple slits, called the periodic reticle. HINOTORI, YOHKOH, and HINODE are a series 

of Japanese solar observing satellites. As the generations have progressed, improvement of the angular resolution of the 

instruments has been achieved, requiring a better pointing resolution and stability. The idea of the UFSS was devised to 

satisfy the requirement of a high-precision attitude 

sensor referring to the Sun in the YOHKOH project[1]. 

In this case, the angular resolution was limited to 2 

arcsec, which corresponds to a timing resolution 

determined by the speed of the logic device of 1980s. 

For the HINODE project, the sun sensor was improved 

by about one order of that of the sensor for YOHKOH. 

Table 1 shows the UFSS performance requirements for 

HINODE. Improvements of the performance were 

achieved by the minimum timing control with an analog 

delay line. The position resolution of the solar image on 

 

Table 1 UFSS requirements for HINODE 
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the CCD was improved to 1/256 pixels. The in-orbit performance showed a stability of 0.5 arcsec and a resolution of 0.14 

arcsec [2] in noise equivalent angle (NEA), where the data resolution was 0.12 arcsec. The UFSS has provided sufficient 

stability and resolution for the X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS). Since the spatial resolution 

of the Solar Optical Telescope (SOT) is about 0.2 arcsec, both the resolution and stability of the UFSS are insufficient for 

SOT observation. The SOT employed an additional pointing system which stabilized the image based on the granule 

correlation in time[3]. The UFSS provided the SOT with an accurate initial observing position on the Sun. 

The observing instruments of Solar-C, the next generation solar observation satellite, have been further improved, with a 

spatial resolution of about 0.1 arcsec, including doubling the aperture of the Solar UV-Visible-IR Telescope (SUVIT). The 

spatial resolution of the other instruments will be about 0.2 arcsec, a similar resolution to that of the SOT. The satellite 

system is studied with the UFSS of the same performance as HINODE as a baseline. Fifteen years have passed since the 

last development of the sun sensor, so the study to reproduce and improve the sun sensor performance has been started. 

The new mechanical and electronics have been designed considering the update in technology, particularly in 

semiconductor devices and the reviewing of the previous UFSS thermomechanical design. 

 

2. UFSS DESIGN 

2.1 Detection method 

The linear CCD sun sensor is one of the most popular attitude sensors in Japanese satellite programs, and 30 units or more 

have been successfully launched. The sensor detects the position of the projected slit image provided by sunlight, as shown 

in Figure 1. The solar direction (sun angle) is determined by: 

 tan 𝜃 = 𝑥
ℎ⁄  (1) 

The field of view (FOV) of the sensor is defined by: tan 𝜃𝐹𝑂𝑉 = 𝐿𝐶𝐶𝐷 2ℎ⁄ , where 𝐿𝐶𝐶𝐷  is the total length of the linear CCD. 

A sun angle of higher accuracy is achieved when the position of the image is measured to a higher accuracy or the when a 

larger height h exists between the CCD and the slit. They are very simple but are hard to achieve, mainly due to the 

following reasons: 

1) The sensor with an increased h results in a larger sensor body. For a sun sensor as an independent system, it is 

relatively difficult for the large body to be thermally isolated from the environment. The heat flow generates a 

significant thermal distortion due to temperature nonuniformity, preventing high accuracy. In order to avoid thermal 

distortion, the system is installed in a temperature-stabilizing instrument, such as a larger observing telescope. Such 

sun sensor systems are employed in the XRT on board HINOTORI, not to control satellite attitude but to determine 

the line of sight (LOS) of the instrument. The system cannot be a general-purpose sun sensor. 

2) The pixel size is about 14 m for a standard 2024-pixel linear CCD. In order to achieve high accuracy, the position x 

will be measured in a sub-pixel dimension. The accuracy of the estimated position is limited by the nonuniformity of 

the sensitivity and dark signal. For a sensor with h = 100 mm, the position determination of 1 m results in an angular 

resolution of 2 arcsec. The accuracy of the slit shape also limits the sensor accuracy. 

The UFSS was inspired by different ideas, and is a sensor based on the fact that the accuracy can be improved by using 

the average of data measured by many independent sensors. This method improves the accuracy and resolution by a factor 

of 𝑁−1/2 if the error caused by the individual sensors is independent, where 𝑁 is the number of the slits. Moreover, the 

effects of a defect of a single slit or of localized pixels can be reduced by a factor of 𝑁−1. When multiple slits with equal 

spacing, a periodic reticle, replace an individual slit, it is equivalent to the multiple sensors formed by each slit and the 

CCD individual sensors, as shown in Figure 1(b). A higher accuracy can be achieved if the position of the projected reticle 

image is precisely determined. Contrarily, the projected image on the CCD looks similar to the periodic signal. Rather than 

detecting the individual image position of slits, the phase of the signal of the reticle can be detected. Though Figure 1(b) 

shows a sinusoidal image, the actual image is obtained by combining the geometric slit image response, the solar angular 

image, and the diffraction response; however, this usually produces a distortion.  
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The UFSS uses a method without the effect of distortion of the image. A stable phase reference is required to detect the 

phase of the signal. The dimension of the CCD, pixel size, and pixel alignment are very precise, of less than a few tens of 

nanometers, in order to achieve pixel uniformity. The readout timing is also precisely controlled. Therefore, the phase 

reference shall be generated based on the driving timing of the CCD. This is the best way to measure the phase of the 

projected image. For example, based on the Fourier series, the phase, i.e., 𝜃 in Equation (1), is obtained by the following 

equations: 

 𝐴 cos 𝜃 =
1

𝑁
∫ cos (2𝜋

𝑡

𝑇𝑅
) ∙ 𝑆 (2𝜋

𝑡

𝑇𝑅
) 𝑑𝑡

𝑇𝑅𝑁

0
  (2) 

 𝐴 sin 𝜃 =
1

𝑁
∫ sin (2𝜋

𝑡

𝑇𝑅
) ∙ 𝑆 (2𝜋

𝑡

𝑇𝑅
) 𝑑𝑡

𝑇𝑅𝑁

0
  (3) 

where 𝑇𝑅is the period of the phase reference signal, and 𝑆(𝑡) is the reticle image read out from the CCD. This system 

detects the phase of the Fourier components with a period 𝑇𝑅 of 𝑆(𝑡). The above equations were difficult to calculate and 

solve to obtain 𝜃 for small sensor electronics in the 1980s. 

When 𝑆(𝑡) is a symmetric function of 𝑡, the Equation (3) is 0 and can be modified as: 

 𝐴 sin 𝛿 =
1

𝑁
∫ sin (2𝜋

𝑡

𝑇𝑅
+ 𝜃 + 𝛿) ∙ 𝑆 (𝜋

𝑡

𝑇𝑅
+ 𝜃) 𝑑𝑡

𝑇𝑅𝑁

0
.  (4) 

Equation (4) shows that the phase of the projected image can be detected by adjusting the phase of the correlating sinusoidal 

function for the equation to be zero. Equation (4) also indicates that there is an error 𝛿 of the phase to be adjusted, and 

when the error is small, it is proportional to the correlation value. Using this, we can take another approach by which the 

correlation value of Equation (4) can be reduced using feedback techniques. The adjusting function is called a replica 

function. The replica function does not need to be a sine function, and similar results can be obtained even with a 

rectangular wave. 

 𝑅(𝑡) = {
1 2𝑛𝜋 ≤ 𝑡 < (2𝑛 + 1)𝜋

−1 (2𝑛 − 1)𝜋 ≤ 𝑡 < 2𝑛𝜋
 (5) 

𝑅(𝑡) and 𝑆(𝑡) are expanded respectively and the following result is obtained: 

 
1

𝑁
∫ 𝑅 (2𝜋

𝑡

𝑇𝑅
+ 𝜃 + 𝛿) ∙ 𝑆 (2𝜋

𝑡

𝑇𝑅
+ 𝜃) 𝑑𝑡

𝑇𝑅𝑁

0
∝  ∑

𝑠2𝑛−1

2𝑛−1

∞
𝑛=1 sin((2𝑛 − 1)𝛿) ≅ 𝛿 ∑ 𝑠2𝑛−1

∞
𝑛=1   (6) 

where 𝑠𝑛 is the Fourier coefficient of S(𝑡) = ∑ 𝑠𝑛cos (𝑡)∞
𝑛=1 . 

Finally, the simple rectangular replica function is applicable to retrieve the phase from the projected image, which is easily 

implemented. 

 

2.2 Electronic design 

The phase-retrieving electronics implemented for HINODE are shown in Figure 3. For the design of YOHKOH, the replica 

signal was simply generated by the MSB of the scaler, for which the spatial period of the reticle was chosen to be 2n pixels. 

The 128-pixel period of the 16-slit design was used for the 2048-pixel CCD. The phase was controlled by the initial value 

Figure 1. Operation of (a) a simple linear CCD sun sensor and (b) a UFSS 
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of the scaler designated by the Phase Register (PR), which is the phase-initialized scaler. The value of the PR shows the 

detected phase, i.e., sun angle, when Equation (6) is equal to zero. The scaler counts synchronously so the phase is not 

affected by the gate propagating delay. The resolution of the phase is limited by the frequency of the master clock. The 

speed of the space qualified logic devices in the 1980s was HCMOS, and the master clock frequency was 8 MHz, which 

corresponded to 1/32 pixel. For the HINODE observatory, the logic devices were small size FPGA. The device speed was 

not drastically improved. The phase resolution with 1/256 pixel, corresponding to the 64 MHz master clock, was achieved 

by an 8-tap analog delay line whose maximum delay was set to 1/32 pixel. For the SOLAR-C design, the replica generator 

is again a simple phase initialized scaler, similar to that for the YOHKOH design, since the FPGA speed is improved to 

use a 64 MHz master clock. 

 

Figure 2. UFSS processing block diagram[2] 

 

The correlator, the function of Equation (6), is composed of an integrator, analog switch, and amplifiers with a gain of 1 

and -1. Since the projected image 𝑆(𝑡) is read out from the CCD and processed by separate electronics, the process timing 

is affected, including by characteristics such as the cable length and frequency response, of the transmission from the CCD 

to the processing electronics. This effect is caused by mechanical stress, temperature change, and cable length, and may 

be the cause of the degradation of the stability. The readout signal is quantized temporally in units of CCD pixels. Since 

the change of characteristics of the transmission line causes a timing deviation from the quantized one, the phase of the 

projected image deviates. When resampling is performed at the timing synchronized with the CCD driving clock by a 

sample hold circuit, it is possible to make the deviation a constant delay so that a constant bias is offset in the retrieved 

phase, therefore not affecting the accuracy and resolution of the sensor. 

 

2.3 Thermomechanical design 

The thermomechanical stability is an important aspect of the UFSS. An angle of 1 arcsec corresponds to a displacement of 

0.5 m for a distance of 100 mm. Though the orbital temperature variation of the sensor shall be interfaced to be less than 

1 K, it is not a negligible change in terms of sensor stability. The submicron mechanical stability for a 1 K deviation is 

required in orbit. 

For a body with a uniform coefficient of thermal expansion (CTE), the body does not bend or distort but only deforms 

similarly when it has a uniform temperature distribution. Dimensional differences between objects with different 

temperatures or CTEs are supported by kinematic mounts so that the angular displacement is minimized. Fourier’s law of 

thermal conduction, , where 𝑞⃗  is the heat flux, shows that any heat flux generates a temperature 

gradient. Therefore, the stable system shall be thermally isolated and have less heat sources in order to minimize thermal 

𝑞⃗ =  −𝜅 grad(𝑇) 
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distortion. The HINODE UFSS was thermomechanically 

designed according to the above approach. For the SOLAR-

C project, the UFSS design will be improved based on 

HINODE heritage. 

(1) The main structure, or optical bench, is made by a 

monolithic titanium alloy with a close CTE to the CCD 

package and the reticle. 

(2) The optical bench is supported by kinematic mounts to 

isolate it from distortion of the mounting points and 

bottom and top chassis. 

(3) The CCD, which generates 0.1 W, is mounted by a 

thermal isolator and the generated heat will be 

transported to the mounting point through a flexible 

laminated copper thin film so that heat does not flow 

though the optical bench. 

(4) The electronics PCB, which includes the CCD driver 

and proximity amplifier, is mounted on the bottom 

chassis and its heat is transported in the bottom chassis. 

(5) Injected heat by solar radiation is absorbed at the top 

chassis and ND filters are transferred through the top 

chassis to the mounting points to avoid transferring 

through the optical bench. 

In addition, it is devised so the CCD and the reticle are 

positioned at the center of the effective length, since the 

symmetrical expansion with respect to their center has no 

primary effect on the detected angle. 

The stability is finally verified by thermomechanical FEM analysis to satisfy the LOS stability, the design strategy is 

crucial in minimizing the distortion. 

 

3. ANALYSIS AND CHARACTERIZATION OF OPERATION 

The processing algorithms are the same for both the YOHKOH and HINODE sensors. 

Assuming that the value of the PR is 𝑃𝑛at the n-th CCD scanning period, the Correlator output 𝐶𝑛 denotes the ADC output, 

which is obtained according to Equation (6) by the scanning CCD. The PR is updated by: 

 𝑃𝑛+1 = 𝑃𝑛 − 𝐶𝑛. (7) 

𝑃𝑛 and 𝐶𝑛  have integer values with the finest resolution, LSB, of the phase as a unit. When 𝐶𝑛 is small, it can be linearized 

as 𝐶𝑛 = 𝑘(𝑃𝑛 − 𝜃) and 𝑃𝑛+1 = 𝑃𝑛 − 𝑘(𝑃𝑛 − 𝜃) can be obtained, where 𝑘 is the feedback gain. 

Assume 𝐸𝑛 = 𝑃𝑛 − 𝜃, 𝐸𝑛 indicates the detected phase error, then Equation (7) can be modified to give the relationship of 

the phase error: 

 𝐸𝑛+1 = (1 − 𝑘)𝐸𝑛. (8) 

This recurrence formula is easily solved and the following result is obtained: 

 𝐸𝑛 = 𝐸0(1 − 𝑘)𝑛. (9) 

Figure 3. SOLAR-C UFSS Mechanical Structure 
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When  1 − 𝑘 < 1 , the detected phase error converges to zero. Feedback gain is a very important parameter. In more 

detail; it monotonously decreases when k changes 

from 0 to 1, and damped oscillation occurs for 

values of k from 1 to 2, however, when k is 2 or more, 

it vibrates divergently. For smaller k, less than 1, the 

system is guaranteed to be stable. However, due to 

integer processing, 𝑃𝑛+1  in Equation (7) does not 

update when 𝐶𝑛 is a fractional value. The residual 

error, which is the phase difference between the 

projected image and the replica signal, at this time 

is expected to be a maximum of 1/k. 

In the YOHKOH sensor, a problem occurred due to 

the selection of the feedback gain. The feedback 

gain 𝑘  was designed to be 1 to minimize the 

processing residual error. Since the field of view of 

the sensor was set to be wider than that of HINODE, 

the image of the reticle was hardly affected by 

smoothing of the solar image, and has a near-

rectangular shape more than a sinusoidal one. As a 

result, according to Equation (6), the feedback gain was about 30% larger than in the case of the sinusoidal image. Based 

on the field test using sunlight, the adjustment of the transmission of a neutral density filter was accidentally selected to be 

larger value. As a result, 𝑘 was selected to be larger than 2, and the detection logic oscillated in orbit. In this case, the 

feedback value 𝐶𝑛 was limited to a 6-bit value, from -31 to 32, the system showed the limit cycle oscillation with an 

amplitude of 31 in peak-to-peak and a period of 2 times the processing period. Figure 4 shows the in-orbit data of the 

YOHKOH sun sensor, TFSS, during a solar eclipse. The amplitude of the projected reticle image was approximately equal 

to the residual area of the apparent solar surface when the sun was occulted, given by “1- Occulting Factor” in the figure. 

The oscillation had a peak-to-peak amplitude of 31 digits, about 60 arcsec and a frequency of about 0.08 Hz. This frequency 

is considered to be the aliasing effect, caused by the low-sampling frequency of the telemetry on the fast updating sensor 

of 125 Hz. The system is stable when the amplitude of the reticle image is about 0.8 or less, k < 2. In the case of k~2, it is 

expected that the stability of the system is limited in response to a small external disturbance. So, once oscillation occurs 

it is difficult to stop, and oscillation from the stable state starts promptly by the external disturbances. For the YOHKOH 

sensor, the feedback gain was estimated to be 2.5. Fortunately, the oscillating amplitude, 31 digits peak-to-peak, was so 

stable that the filtering in the attitude control system provide enough accuracy and resolution for YOHKOH observation. 

Since this sun sensor consists of such a control system, it seems to be meaningful to investigate its dynamic characteristics. 

When the discrete system of Equation (8) is approximated by a continuous system, the relationship given by Equation (10) 

is obtained: 

 
𝑑𝜀(𝑡)

𝑑𝑡
= −𝑘𝜀(𝑡) + 𝑘Δ(𝑡) (10) 

where the temporal function Δ(𝑡) is the input of disturbance, such as a change in spacecraft attitude or noise; 𝜀(𝑡) is the 

response readout sensor data. The transfer function 𝐻(s) is given as the first-order lag system with a cutoff frequency of 

k. 

 𝐻(s) =
1

1+
𝑠

𝑘
 (11) 

When the HINODE sun sensor was designed, the stability tended to be lost if the amplitude of the projected reticle image 

was too large. The tradeoff of the risk of convergence residuals against stability was, hence, studied. It was designed as k 

= 0.5 to 1 to reduce the risk of losing stability. This selection is justified by a phase resolution of the replica signal of 1/8, 

given by the delay line technique, and the resolution in RMS limited by the photon shot noise of the CCD becomes almost 

equal to the LSB of PR, the control residual can be ignored. In-orbit data shows an NEA of 0.14 arcsec. Considering an 

LSB of 0.12 arcsec,[2] the HINODE UFSS reached maximum NEA performance, limited by the CCD performance with a 

maximum temporal resolution; it is not necessary to further improve the phase control resolution of the replica signal using 

a higher frequency clock. However, the data update of the UFSS is about 10 Hz, and by devising a CCD readout method, 

 
Figure 4. YOHKOH flight data during a solar eclipse 
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it is possible to increase the speed to about 100 Hz, 

since the line readout is completed in 8 ms. 

Considering that the system is a first-order lag 

system, the above averaging effect can be installed 

in the sensor by adjusting the response speed of the 

system, 1/k. Although there is a possibility that the 

NEA can be small, the phase resolution of the replica 

signal does not change and the residual error 

becomes large, so it cannot be directly applied to the 

HINODE system. 

Following the simple modifications may archive 

both the reduction of the residual error and reduction 

of the NEA. The PR should be a fixed-point real 

number whose integer part should control the replica 

signal and 𝐶𝑛 shall also be a fixed-point real number. 

The LSB of the ADC output shall be modified to be 

the LSB of the fractional part. Since the CCD shot 

noise is random, it can be expected that the noise 

decreases in proportion to 𝑘1/2  according to the 

decrease of the bandwidth k. The phase resolution of 

the replica signal is limited by only the integer part of the PR. Since the error caused by the fractional part is a quantization 

error with a standard deviation 𝜎𝑃 of 1 √12⁄  LSB, the random error due to the CCD noise 𝜎𝐶𝐶𝐷 shall be large enough to 

ignore the quantization effect, empirically𝜎𝑃 > 3𝜎𝐶𝐶𝐷 . Figure 5 shows the simulation results with 𝑘 = 0.125, 𝜎𝐶𝐶𝐷 = 1. 

The vertical unit of the figure is the minimum phase resolution of the replica signal and the vertical unit is the updated 

cycle. The step response shows a time constant of 8, and a residual error of 0.24 RMS. The NEA will be about 3 times 

smaller than 𝜎𝐶𝐶𝐷 . The residual error has a significant offset which is a constant offset caused by the truncated fraction of 

the PR. The result shows the possibility for an improvement of the UFSS NEA of about 0.05 arcsec. 

4. CONCLUSION 

The YOHKOH and HINODE sun sensors were reviewed and analyzed. The stability condition of the system was obtained, 

which may explain the malfunctions of the YOHKOH flight system. The dynamic characteristics of the sun sensor data 

are characterized by the first-order lag system and the following simple modifications for the SOLAR-C UFSS are 

proposed to improve the NEA performance up to 0.05 arcsec: 

• The PR, which shows the sun angle, shall have an additional fractional 4 bits. 

• The ADC-conversion LSB shall be adjusted to that of the PR. 

• The feedback gain k shall be 0.125 (= 1/8). 

The thermomechanical design was also studied and can be verified by FEM analysis and by a hardware model. Even if the 

stability caused by a temperature change cannot be greatly improved from the HINODE UFSS, a short-term stability of 

0.1 arcsec is expected within 10 min based on HINODE data. When an NEA of 0.05 arcsec is achieved, the UFSS may be 

a candidate for the backup system of the pointing system with a high-resolution optical telescope for observation. 

The BBM electronics and structure were completed to verify the design study. 

Another important issue in the development of a ultra-high precision sun sensor is verification[4]. Since an accurate 

verification of the equipment in the HINODE project, as well as the UFSS, is required, many trial and error and a final test 

of several months were required. Using the assembled BBM, we are also planning a compatibility and evaluation of BBM 

with the improved test system. 

ACKNOWLEDGEMENTS 

The authors would like to express our sincere gratitude to Mr. T. Okamoto and Mr. S. Akabane who were YOHKOH 

sensor engineers, and Mr. T. Okumura and Mr. T. Yamamoto who were HINODE sensor engineers. They are also grateful 

to Dr. K. Ninomiya and Mr. T. Kameda who provided the opportunity to create the idea of periodic reticle sun sensors. 

 
Figure 5. Step response simulation result of UFSS. Vertical 

unit is shown by the minimum phase resolution unit. 
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