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ABSTRACT 

We present an analytical model for the dynamical self-heating effect in air-cladded optical microring resonators (ORRs). 

The spatially and time resolved temperature field is calculated by integrating the corresponding boundary value problem 

of the heat equation. It turns out that the self-heating amplitude is approximately proportional to the total absorbed power 

and anti-proportional to the thermal conductivity of the cladding material. Further, two-photon absorption plays a major 

role in the heating process, even for moderate input powers, due to the strong light confinement. Heating times are 

determined to be in the microsecond range and may limit the response time of ORR devices. The explicit formulas for the 

temperature fields allow a much faster determination of heating properties compared to elaborate finite element 

simulations. Thus, our model is predestinated for scanning large parameter spaces. 

Keywords: optical ring resonators, heat equation, absorption, two-photon absorption, temperature sensing, thermal 

modeling 

 

1. INTRODUCTION  

Optical microring resonators (ORRs) are circular waveguide structures with sub-wavelength thicknesses and diameters in 

the µm-range. High index resonator structures are embedded into low index dielectric claddings. Those devices enable a 

variety of biological [1,2], chemical [3,4] and physical [5,6] sensing applications with unique spatial resolution. A 

prominent physical application is the precise and robust measurement of temperature [7,8]. A typical configuration is the 

all-pass-filter [9], where light is evanescently coupled from a straight bus waveguide into the resonator ring [10]. 

Resonances in the ring lead to anti-resonances in the outcoupled light. As the spectral position of those resonances is 

shifted by temperature changes via the thermo-optical effect, probing this position gives access to the temperature of the 

ORR. 

Refractive index pertubations, caused by optical absorption processes, lead to a superimposed resonance distortion. Created 

charge carriers couple to the dielectric function of the ring material by electro-optical effects such as bandgap shrinkage 

[11] and band filling [12]. Further, excess energies during the absorption and non-radiative recombinations insert heat into 

the resonator ring. Both these mechanisms lead to a superimposed resonance shift. Additionally, optical bistability effects 

[13], induced by the two-photon absorption (TPA) process [14], cause a strong asymmetry in the resonance shape [15] for 

very high intensities. 

In this work, we derive analytical formulas for the self-heating effect in air-cladded ORRs. For that purpose, the heat 

equation with its corresponding boundary conditions and an absorption induced heat source is integrated on the ORR 

domain. Although not all occurring integrals can be expressed in terms of elementary functions, the explicit formulas for 

the spatially and time resolved temperature fields can be evaluated with substantially reduced computational costs 

compared to a rigorous numerical solution of the boundary value problem. Furthermore, physical dependencies manifest 

in a direct way here. For a comparison and verification of the analytical results, rigorous finite element simulations are 

performed. 
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2. THE ANALYTICAL SELF-HEATING MODEL 

Geometry of optical ring resonators  

We investigate ORRs in the all-pass-filter configuration [9], as depicted in figure 1. A high-index resonator ring of width 

𝑏, height 𝑑 and diameter 𝐷 is evanescently coupled to a straight bus waveguide through a gap 𝑔. The waveguides are 

placed on a low refractive index bottom cladding, typically made of silica glass, and are covered by a top cladding. In the 

scope of this work, the top cladding is air. For the formulation of the boundary value problem, see section 2.2, a Cartesian 

coordinate system (𝑥1, 𝑥2, 𝑥3) is utilized as shown in figure 1. 

 

 

Figure 1. All-pass-filter configuration of an optical ring resonator device. The ring and bus waveguides are placed on a low 

refractive index bottom cladding and are covered by a top cladding. 

 

The boundary value problem 

Although photon energies far below the band gap of the resonator material are typically used, guided light in optical ring 

resonators gets partially absorbed. Linear absorption processes that include defect states and TPA lead to the creation of 

free charge carriers [15]. The resulting change in the carrier concentration directly influences the resonance conditions by 

electro-optical effects [11,12]. While the excess energy of the absorption process is directly transferred into heat, 

recombinations occur after respective lifetimes 𝜏. In indirect semiconductor materials like crystalline silicon, nearly all 

recombinations are non-radiative [16]. Thus, the annihilation energy is also transferred into heat. Charge carrier lifetimes 

in silicon microring resonators are in the order of 𝜏 = 1 ns [17], so that the time delay between absorption and heat creation 

is neglected here. 

The following self-heating model is an extension to a previous calculation for thermal equilibrium, presented in Weituschat 

et al. [18], to the full heating dynamics. In order to formulate the boundary value problem that defines the temperature 

field, the following approximations are pre-determined: 

(I) The bottom cladding region Ω1 is very large and set to be equal to the lower Euclidean half-space, i.e. Ω1 = ℝ3
−. 

(II) While the bottom cladding is typically made of silica glass [19], the resonator ring consists of crystalline materials 

such as silicon. Thus, the thermal diffusivity 𝑎 in the former is much smaller than in the latter, i.e. 𝑎1 ≪ 𝑎2 (see 

table 1). 
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(III) A critical self-heating is expected exclusively on resonance due to the high resonator finesse. Here, the intensity 

distribution 𝐼(𝒙, 𝑡) in the ring is overall much higher than in the bus waveguide, which is consequently neglected. 

Further, 𝐼 is assumed to be spatially homogeneous. 

(IV) We investigate air-cladded devices, making the heat flow into the top cladding negligible. 

In the whole device Ω, the temperature field 𝑇(𝒙, 𝑡) satisfies the heat equation 

𝜕t𝑇(𝒙, 𝑡) − 𝑎 𝛁2𝑇(𝒙, 𝑡) = 𝑓(𝒙, 𝑡) in Ω,                                                                       (1) 

where 𝑓 is the local volumetric heat source [20]. According to approximation (IV), the whole inserted heat into the ring is 

transferred to the bottom cladding via the interface in between. Further, the heating time is predominantly determined by 

the cladding due its much lower thermal diffusivity, see table 1. Due to the very thin waveguide width compared to the 

ring diameter (𝑏 ≪ 𝐷, see table 1), the heat source 𝑓1 utilized for the heating calculation in the bottom cladding is 

approximated as a delta distributed ring apart from the interface: 

𝑓1(𝒙) = 𝑏𝑑
𝛼𝐼 + 𝛽𝐼2

𝜌1𝑐m1

𝛿 [𝜚 −
𝐷

2
] 𝛿[𝑥3],                                                                        (2) 

with the constant light intensity in the ring 𝐼, the linear attenuation coefficient 𝛼, the TPA coefficient 𝛽, the cladding mass 

density 𝜌1, the cladding heat capacity 𝑐m1 and cylindrical coordinates (𝜚, 𝜑, 𝑥3). Both linear absorption processes from 

defect states and TPA are considered here, leading to 𝛼𝐼 + 𝛽𝐼2 for the absorbed power density [21]. A very large bottom 

cladding ℝ3
−, surrounded by air with negligible heat release, fulfills insulating boundary conditions (BCs) [22]. That leads 

to the Neumann problem: 

𝜕t𝑇1(𝒙, 𝑡) − 𝑎1 𝛁2𝑇1(𝒙, 𝑡) = 𝑓1(𝒙) in Ω1\ {𝒙|𝜚 ∈ [
𝐷

2
−

𝑏

2
,
𝐷

2
+

𝑏

2
]}  and 

𝛁𝑇1(𝒙) = 𝟎 on 𝜕Ω1\ {𝒙|𝜚 ∈ [
𝐷

2
−

𝑏

2
,
𝐷

2
+

𝑏

2
]},                                                               (3) 

determining the temperature field 𝑇1(𝒙, 𝑡) in the cladding region apart from the interface. 

Due to the high heating rate in the ring region and the high thermal contact conductance (see table 1), a quasi-equilibrium 

temperature distribution is reached within few nanoseconds, as shown by the following estimation. The temporal heating 

behavior in the resonator ring is determined by the law of conservation of energy: 

(𝛼𝐼 + 𝛽𝐼2)𝜋𝐷𝑏𝑑 = 𝜌2𝜋𝐷𝑏𝑑𝑐m2𝜕t𝑇2(𝑡) + ℎ12𝜋𝐷𝑏(𝑇2(𝑡) − 𝑇1(𝒙, 𝑡)|Interface).                                  (4) 

Here, 𝜌2 is the ring mass density, 𝑐m2 is the heat capacity and ℎ12 is the thermal contact conductance. Further, 𝜋𝐷𝑏𝑑 is 

the ring volume and 𝑇1(𝒙, 𝑡)|Interface is the cladding temperature at the interface. Thus, the left side of equation (4) is the 

total absorbed power. That power is equal to the sum of the inserted heat in the ring per time and the heat flow through the 

interface per time, representing the right side. Considering a much slower heating rate in the large cladding, the solution 

of equation (4) is a saturating exponential increase of the ring temperature: 

𝑇2(𝑡) ≈ 𝑇1(𝒙, 𝑡)|Interface + 𝑑
𝛼𝐼 + 𝛽𝐼2

ℎ12

(1 − exp [−
ℎ12

𝑑𝜌2𝑐m2

𝑡]).                                              (5) 

For typical silicon ORR systems (see table 1), the corresponding heating time 𝑡rise = 𝑑𝜌2𝑐m2/ℎ12 is equal to 0.4 ns. Thus, 

the fast heating period in the ring region is neglected and a quasi-equilibrium temperature field 𝑇2(𝒙, 𝑡) is calculated, 

following the much slower heating process (µs-range, see figure 4) in the cladding. For that purpose, the cylindrical 

coordinate 𝜚 is shifted by −𝐷/2 + 𝑏/2, resulting in a new radial coordinate �̃� = 𝜚 − 𝐷/2 + 𝑏/2. Due to the cylindrical 

symmetry, the problem is effectively two-dimensional with the waveguide cross-section Ω̃2 = [0, 𝑏] × [0, 𝑑] as its 

rectangular domain. On the lower boundary 𝑥3 = 0, a Dirichlet condition 𝑇20(𝒙, 𝑡) as well as a Neumann condition are 

enforced by the cladding temperature distribution 𝑇1(𝒙, 𝑡)|Interface and the thermal contact conductance at the interface 

[22]. On all other boundaries, exclusively insulating Neumann BCs are applied due to the air top cladding. The resulting 

mixed BC Poisson equation reads as 

Proc. of SPIE Vol. 11783  1178309-3



 

 
 

 

 

 

−(∂�̃�
2 + ∂𝑥3

2)𝑇2(𝒙, 𝑡) =
𝑓2

𝑎2

 in Ω̃2,       

𝑇2(𝒙, 𝑡)|𝑥3=0 = 𝑇20(𝒙, 𝑡) and ∂𝑥3
𝑇2(𝒙, 𝑡)|𝑥3=0 =

𝑑

𝜆Q2

(𝛼𝐼 + 𝛽𝐼2) and 

∂�̃�𝑇2(𝒙, 𝑡)|�̃�=0 = ∂�̃�𝑇2(𝒙, 𝑡)|�̃�=𝑏 = ∂𝑥3
𝑇2(𝒙, 𝑡)|𝑥3=𝑑 = 0,                                                      (6) 

with the constant heat source 

𝑓2 =
𝛼𝐼 + 𝛽𝐼2

𝜌2𝑐m2

.                                                                                             (7) 

Solution for the temperature field 

First, the bottom cladding temperature field 𝑇1(𝒙, 𝑡) according to equation (3) is calculated. The solution of that boundary 

value problem is a convolution of the heat source 𝑓1(𝒙, 𝑡) and a fundamental solution 𝐺(𝒙, 𝒙′, 𝑡) for the respective BCs 

[20]: 

𝑇1(𝒙, 𝑡) = 𝑇0 + ∫ ∫ 𝐺(𝒙, 𝒙′, 𝑡 − 𝑡′)𝑓1(𝒙′)d3𝑥′d𝑡′

Ω1

𝑡

0

.                                                         (8) 

Here, the fundamental solution is the Greens function for the lower Euclidean half-space and insulating Neumann BCs: 

𝐺(𝒙, 𝒙′, 𝑡) =
1

(4𝜋𝑎1𝑡)
3
2

(exp [−
‖𝒙 − 𝒙′‖2

4𝑎1𝑡
] + exp [−

‖𝒙 − 𝒙′∗‖2

4𝑎1𝑡
]),                                            (9) 

where 𝒙′∗
≡ (𝑥1′, 𝑥2′, −𝑥3′) is the reflection vector with respect to the 𝑥1′-𝑥2′-plane. Due to 𝑓1(𝒙) ∝ 𝛿[𝑥3], see equation 

(2), exclusively values of 𝐺 at 𝑥3′ = 0 contribute to the convolution (8). Consequently, the distance in cylindrical 

coordinates fulfills ‖𝒙 − 𝒙′‖2 = ‖𝒙 − 𝒙′∗‖2 = 𝜚2 + 𝜚′2 + 𝑥3
2 − 2𝜚𝜚′ cos 𝜑 over the whole integration range. Using that 

distance in equation (8), the 𝜚′- and 𝑥3′-integration lead to 

𝑇1(𝒙, 𝑡) = 𝑇0 + 𝐷𝑏𝑑
𝛼𝐼 + 𝛽𝐼2

𝜌1𝑐m1

∫ ∫

exp [−
𝜚2 + (

𝐷
2

)
2

+ 𝑥3
2 − 𝜚𝐷 cos 𝜑′

4𝑎1(𝑡 − 𝑡′)
]

(4𝜋𝑎1(𝑡 − 𝑡′))
3
2

d𝜑′d𝑡′.
2𝜋

0

𝑡

0

                         (10) 

While the 𝜑′-integral represents a hyperbolic Bessel function of first kind I0 [23], the remaining time integral cannot be 

expressed by elementary functions: 

𝑇1(𝒙, 𝑡) = 𝑇0 +
2

√𝜋
𝐷𝑏𝑑

𝛼𝐼 + 𝛽𝐼2

𝜌1𝑐m1

∫

exp [−
𝜚2 + (

𝐷
2

)
2

+ 𝑥3
2

4𝑎1(𝑡 − 𝑡′)
] Ι0 [

𝜚𝐷
4𝑎1(𝑡 − 𝑡′)

]

(4𝑎1(𝑡 − 𝑡′))
3
2

𝑡

0

d𝑡′ in Ω1\ {𝒙|𝜚 ∈ [
𝐷

2
−

𝑏

2
,
𝐷

2
+

𝑏

2
]}.     

(11) 

Thus, the temperature increase in the bottom cladding ∆𝑇1 = 𝑇1 − 𝑇0 is proportional to the total absorbed power 

(𝛼𝐼 + 𝛽𝐼2)𝜋𝐷𝑏𝑑 and anti-proportional to the thermal conductivity 𝜆Q1 = 𝜌1𝑐m1𝑎1. It asymptotically reaches zero for large 

distances, i.e. lim
‖𝒙‖→∞

Δ𝑇1(𝒙, 𝑡) = 0. In thermal equilibrium, i.e. 𝑡 → ∞, the cladding temperature field can be further 

simplified. For that purpose, the mathematical identity [24] 

∫
1

𝑡′3/2

∞

0

exp [−
𝐶1

𝑡′
] Ι0 [

𝐶2

𝑡′
] d𝑡′ = √

2

𝜋𝐶2

ℜ (𝐾 [
1

2
(

𝐶1

𝐶2

+ 1)])                                                 (12) 
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is utilized, where ℜ denotes the real part of the complete elliptic integral of first kind 𝐾. Thus, the thermal equilibrium 

temperature distribution 𝑇1(𝒙, ∞) reads as 

𝑇1(𝒙, ∞) = 𝑇0 +
𝐷𝑏𝑑

√2𝜋𝜆Q1

𝛼𝐼 + 𝛽𝐼2

√𝜚𝐷
ℜ (𝐾 [

1

2
(1 +

𝜚2 + (
𝐷
2

)
2

+ 𝑥3
2

𝜚𝐷
)])  in Ω1\ {𝒙|𝜚 ∈ [

𝐷

2
−

𝑏

2
,
𝐷

2
+

𝑏

2
]}.        (13) 

Directly at the interface, an approximately homogeneous temperature distribution emerges: 

𝑇1(𝒙, 𝑡) = 𝑇1(𝒙, 𝑡)|
𝜚=

𝐷
2

+
𝑏
2

, 𝑥3=0
 in Ω1 ∩ {𝒙|𝜚 ∈ [

𝐷

2
−

𝑏

2
,
𝐷

2
+

𝑏

2
]}.                                               (14) 

In order to obtain the temperature field 𝑇2(𝒙, 𝑡) in the resonator ring from equation (6), the lower boundary temperature 

𝑇20(𝒙, 𝑡) must be determined. For that purpose, an energy balance for the heat flow through the interface between ring and 

bottom cladding is formulated, considering a quasi-equilibrium distribution in the former one: 

𝜋𝐷𝑏𝑑(𝛼𝐼 + 𝛽𝐼2) = ℎ12𝜋𝐷𝑏(𝑇20(𝒙, 𝑡) − 𝑇1(𝒙, 𝑡)|𝑥3=0).                                                      (15) 

Here, the left side is the total absorbed power. In thermal equilibrium, that inserted heat completely flows through the 

interface to the bottom cladding. The corresponding heat transfer per time is represented by the right side of equation (15). 

Hereby, 𝑇20(𝒙, 𝑡) is determined by the bottom cladding temperature field 𝑇1(𝒙, 𝑡)|𝑥3=0 according to equation (14). 

Applying the superposition principle, the general solution of (6) is the sum of a particular solution 𝑇2p(𝒙, 𝑡) of the 

inhomogeneous Poisson equation and the general solution 𝑇2h(𝒙, 𝑡) of the homogeneous Laplace equation [25]. A 

particular solution that fulfills all Neumann BCs is 

𝑇2p(𝒙, 𝑡) =
𝑓2

2𝑎2

𝑥3(2𝑑 − 𝑥3).                                                                              (16) 

As 𝑇2p(𝒙, 𝑡)|𝑥3=0 = 0 holds at the interface here, the BCs for the Laplace problem of the homogeneous solution remain 

unchanged, except ∂𝑥3
𝑇2h(𝒙, 𝑡)|𝑥3=0 = 0, compare equation (6). A product separation ansatz leads to eigenvalue problems 

for the radial and 𝑥3-dependencies. The general homogeneous solution is a superposition of all eigenstates, expressed by 

the Fourier series [26] 

𝑇2h(𝒙, 𝑡) = 𝑐0(𝑡) + ∑ 𝑐𝑚(𝑡)(𝑒−𝑘𝑚𝑥3𝑒2𝑘𝑚𝑑 + 𝑒𝑘𝑚𝑥3) cos(𝑘𝑚�̃�)

∞

𝑚=1

, 𝑘𝑚 =
𝑚𝜋

𝑏
.                                 (17) 

The constant Dirichlet condition at the interface enforces 𝑐0(𝑡) = 𝑇20(𝑡), while all higher Fourier coefficients equal zero. 

Thus, the resulting temperature field within the ring resonator reads as 

𝑇2(𝒙, 𝑡) =
𝛼𝐼 + 𝛽𝐼2

2𝜆Q2

𝑥3(2𝑑 − 𝑥3) +
𝑑

ℎ12

(𝛼𝐼 + 𝛽𝐼2) + 𝑇1(𝒙, 𝑡)|
𝜚=

𝐷−𝑏
2

, 𝑥3=0
.                                     (18) 

Here, the first summand describes the parabolic temperature distribution in 𝑥3-direction, the second summand is the 

temperature step at the interface and the third summand is the cladding temperature. 

 

3. THE FINITE ELEMENT MODEL 

For the numerical computation, the software Comsol Multiphysics [27] is utilized. Only thermal equilibrium temperature 

distributions, i.e. 𝑡 → ∞, are determined here. Since the ring is the primary heat source when driven at the resonance 

wavelength, we can simplify the computation by using axis symmetry. Hereby, the geometric model consists of the silicon 

ring waveguide with width 𝑏, height 𝑑 and diameter 𝐷 (see table 1). The ring is surrounded by two half-spheres, as 

illustrated in figure 2: one for the upper air cladding and the one for the SiO𝑥 bottom cladding beneath the waveguide. 

These two half-spheres are limiting the optical computation, using scattering boundary conditions. Another spherical 

domain is added, that is used to simulate an infinite SiO𝑥 substrate as heat sink by imposing an infinite-element-domain 

condition with a fixed temperature boundary of 𝑇0. The width of this domain is equal to 10 % of the radius 𝑅clad of the 
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Figure 2. Sketch of the axis-symmetric model for the FEM computation. The inner sphere with radius 𝑅clad marks the 

optical computation area. The outer sphere with radius 𝑅inf utilizes the infinite-element-domain property to simulate an 

infinite SiO𝑥 substrate with a fixed temperature of 𝑇0. 

 

entire system. The radius of both cladding domains is determined by sweeping the radius until the temperature of the ring 

waveguide converges to a constant value. This radius was found to be 𝑅clad ≈ 3 ∙ 𝐷. Thermal radiation and convection at 

the air-solid-interfaces are neglected. A triangular mesh is used with a maximum element size of 𝜆/30 within and 𝜆/12 

outside the waveguide core with a growth rate of 1.1. As a first simulation step, an eigenfrequency study is conducted to 

determine the exact optical resonance wavelength of the system, which is found to be at 𝜆 = 1546.6 nm. Afterwards, a 

user-defined port combined with a frequency-domain study is used to calculate the electromagnetic field distribution for 

several input powers. The intensity 𝐼 within the ring is calculated from the electric field 𝐸 as 

𝐼(𝒙) =
1

2
𝑛2휀0𝑐𝐸(𝒙)2,                                                                                    (19) 

where 𝑛2 is the refractive index of the ring, 휀0 is the vacuum permittivity and 𝑐 is the vacuum speed of light. Cylindrical 

coordinates (𝜚, 𝜑, 𝑥3) are utilized. In thermal equilibrium, the time derivative in the heat equation vanishes, leading to 

−𝑎𝛁2𝑇(𝒙) = 𝑓(𝒙).                                                                                       (20) 

The heat source 𝑓(𝒙) is defined just like in equation (7), but with a spatially dependent intensity distribution 𝐼(𝒙) according 

to the electric field 𝐸(𝒙). 

 

4. SELF-HEATING IN SILICON RESONATORS - RESULTS 

Equations (11), (14) and (18) describe the spatially and time resolved temperature field in the whole ORR device 

analytically. The heating behavior is exemplarily calculated for a crystalline silicon resonator on silica glass with air as top 

cladding. All input parameters are summarized in table 1. This ORR was manufactured as part of a multi-project wafer 

run. Therefore, the geometric dimensions are the target design parameters without manufacturing design tolerances, 

D/2

𝜚=0

b
d

RcladRinf

SiOx

Air
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Table 1. Input parameters for the heating calculations. 

Quantity Symbol Unit Value Source 

diameter 𝐷 nm 19130 design 

width 𝑏 nm 500 design 

height 𝑑 nm 220 design 

thermal conductivity cladding (SiO2) 𝜆Q1 
W

mK
 1.3 [28] 

thermal conductivity ring 𝜆Q2 
W

mK
 130 [29] 

linear attenuation coefficient 𝛼 
1

m
 6.9 measured 

TPA coefficient 𝛽 
m

W
 8 × 10−12 [30] 

thermal contact conductance ℎ12 
W

m2K
 109 [31] 

mass density cladding (SiO2) 𝜌1 
kg

m3
 2200 [32] 

heat capacity cladding (SiO2) 𝑐m1 
J

kg K
 1000 [33] 

loss factor laser → chip 𝐶1 1 0.25 measured 

coupling efficiency 𝐶2 1 0.01 simulated 

Q-factor 𝑄 1 2.5 × 105 measured 

free spectral range 𝐹𝑆𝑅 nm 9.575 measured 

full width at half maximum 𝐹𝑊𝐻𝑀 pm 7 measured 

temperature sensitivity d𝜆/d𝑇 pm/K 68 [18] 

operation wavelength 𝜆 nm 1546.6 measured 

 

For a handy comparison between the measurable spectral shift ∆𝜆 of the resonance and the calculated self-heating, both 

are determined as functions of the experimental accessible laser input power 𝑃0 and wavelength sweep rate d𝜆/d𝑡. The 

intensity 𝐼 in the resonator is calculated as 

𝐼 = 𝐶1𝐶2𝑄
𝐹𝑆𝑅

𝜆

𝑃0

𝑏𝑑
,                                                                                       (21) 

where 𝐶1𝐶2 represents the portion of light from the laser that is coupled into the resonator ring, and 𝑄 × 𝐹𝑆𝑅/𝜆 is the 

resonator finesse. Further, the excitation time 𝑡 is determined by the 𝐹𝑊𝐻𝑀 of the resonance and the wavelength sweep 

rate as 

𝑡 =
𝐹𝑊𝐻𝑀

d𝜆/d𝑡
.                                                                                             (22) 
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Figure 3 shows the analytically calculated radial temperature distribution in the bottom cladding in thermal equilibrium 

according to equation (13), i.e. ∆𝑇1(𝜚, 0, ∞). An input laser power 𝑃0 = 0.4 mW is utilized here, leading to a maximal 

heating amplitude of ∆𝑇1(𝐷/2,0, ∞) ≈ 19 mK at the interface. For comparison, the FEM computed result is additionally 

depicted in figure 3 (b) (dashed line). The associated heating amplitude is with about 22.5 mK slightly higher than the 

analytically calculated one. 

 

Figure 3. (a) Analytically calculated temperature field ∆𝑇1(𝑥1, 𝑥2, 0, ∞) on the upper edge of the bottom cladding in thermal 

equilibrium. The input power 𝑃0 is equal to 0.4 mW here. (b) Analytically calculated (solid line) and FEM computed 

(dashed line) radial temperature profile ∆𝑇1(𝜚, 0, ∞). 

 

Figure 4 shows the analytically calculated resonator temperature increase as a function of time according to equation (18), 

i.e. ∆𝑇2(𝐷/2,0, 𝑡). Additionally, the corresponding wavelength sweep rate and the resulting spectral resonance shift are 

depicted on the upper and on the right axis, respectively. Again, 𝑃0 = 0.4 mW is utilized. It turns out that thermal response 

times of the ORR device under continuous wave excitation are in the µs-range: the excitation time for reaching half of the 

equilibrium temperature increase is 𝑡0.5 ≈ 13 µs. 

 

Figure 4. Analytically calculated temperature increase on the lower edge of the resonator ring ∆𝑇2(𝐷/2,0, 𝑡). The input 

power 𝑃0 is equal to 0.4 mW here. 
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Figure 5 shows the analytically calculated (solid lines) power dependence of the resonator temperature increase 

∆𝑇2(𝐷/2,0, 𝑡) for three different wavelength sweep rates according to equation (18). Again, the resulting spectral 

resonance shift is depicted on the right axis. Slower wavelength sweeping leads to a stronger heating effect, as the heating 

period gets longer. For relatively low excitation powers, i.e. 𝑃0 < 𝑃th, linear absorption processes are the dominant heat 

source. Here, the temperature increase is proportional to the input power. For sufficiently high powers, i.e. 𝑃0 > 𝑃th, TPA 

gets dominant and hence ∆𝑇2 rises quadratically with 𝑃0. The threshold between those two regimes is calculated from the 

heat source (2) and intensity (21) to be 𝑃th,ana ≈ 22 mW. 

 

Figure 5. FEM computed (dashed line) and analytically calculated (solid lines) temperature increase on the lower edge of the 

resonator ring ∆𝑇2(𝐷/2,0, 𝑡) as a function of input power 𝑃0 for three different wavelength sweep rates d𝜆/d𝑡. 

 

For comparison, the respective FEM computed power dependence is depicted in figure 5 as well (dashed line). That 

simulation result is referring to thermal equilibrium, i.e. d𝜆/d𝑡 → 0. As already shown in figure 3 (b), the simulated heating 

amplitude is slightly higher than the analytically calculated one in the linear regime. That deviation increases in the TPA 

dominated regime. Thus, the FEM computed threshold is with about 𝑃th,FEM ≈ 14 mW significantly lower than 𝑃th,ana. 

The overestimation of 𝑃th in our analytical model is a result of approximation (III) (see section 2.2): a homogeneous 

intensity distribution within the ring waveguide leads to lower peak intensities, and thus to a lower threshold. In general, 

𝑃th is determined by an equality of the total absorbed power due to linear and quadratic absorption: 

𝛼 ∫ 𝐼th(𝜚, 𝑥3)

Ω2

d𝜚d𝑥3 ≡ 𝛽 ∫ 𝐼th
2(𝜚, 𝑥3)

Ω2

d𝜚d𝑥3 with 𝑃th =
𝐹𝑆𝑅

𝜆𝐶1𝐶2𝑄
∫ 𝐼th(𝜚, 𝑥3)

Ω2

d𝜚d𝑥3.                        (23) 

The FEM computed electric field distribution 𝐸(𝜚, 𝑥3) ∝ 𝐼1/2(𝜚, 𝑥3) is depicted in figure 6. Utilizing this simulation result, 

a homogeneous distribution for the analytical model and equation (23) leads to the ratio 𝑃th,ana/𝑃th,FEM: 

𝑃th,ana

𝑃th,FEM

=
𝑏𝑑 ∫ 𝐸4(𝜚, 𝑥3)

Ω2
d𝜚d𝑥3

(∫ 𝐸2(𝜚, 𝑥3)
Ω2

d𝜚d𝑥3)
2 ≈ 1.40.                                                                  (24) 

The threshold between the linear absorption and the TPA dominated regimes marks an important transition in ORR 

systems, as optical bistability effects are caused by TPA [13-15]. 
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Figure 6. FEM computed electric field distribution 𝐸(𝜚, 𝑥3) on resonance within the resonator ring cross-section for an input 

power 𝑃0 = 0.4 mW. 

 

5. CONCLUSION AND OUTLOOK 

In this work, we investigate the dynamical self-heating effect in optically excited optical microring resonators (ORRs). For 

that purpose, the heat equation boundary value problem under continuous excitation is solved in air cladded ORRs. We 

derive completely analytical expressions for the spatially and time dependent temperature fields. The self-heating effect is 

explicitly calculated for a widely applied ORR technology platform [9,34,35]: a silicon ring resonator on a silica glass 

bottom cladding. More explicitly, this ORR was produced using a multi-project wafer prototyping process. Experimentally 

determined parameters (see table 1) were included in the calculations. It is shown that the heating amplitude, which is 

about 50 mK for an input power of 1 mW, is mainly determined by the bottom cladding due to its small thermal 

conductivity. Excitation times for reaching half of the equilibrium temperature increase are in the range of a few µs, and 

therefore about 104 times larger than typical charge carrier lifetimes in the resonator ring [17]. As expected, the heating 

amplitude rises linearly with the input power in the linear absorption dominated and quadratically in the TPA dominated 

regime. In the latter power range (here above a threshold of about 14 mW), optical bistability effects cause significant 

asymmetries in the resonance shape [13-15]. 

The analytical results are verified by rigorous finite element simulations (FEM) in thermal equilibrium. For this purpose, 

the software Comsol Multiphysics [27] is utilized. Both analytical and numerical results are in good agreement down to a 

deviation of about 20 % in the heating amplitude and of about 55 % in the TPA threshold. Those deviations are due to a 

simplification in the analytical model, namely a homogeneous intensity distribution in the ring. The derived equations 

enable the determination of the whole temperature field with drastically reduced computational effort compared to FEM 

simulations, which enables fast scans over the whole parameter space. In future, the derived analytical model shall be 

extended by charge carrier dynamics and optical bistability effects. That extension would enable the modelling of 

absorption induced resonance distortions at low computational costs. 
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