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ABSTRACT 

X-ray phase-contrast tomography (X-PCT) techniques are capable of imaging samples with small differences in densities. 

They enable scientists to study biological or medical samples using high energy X-rays, which means less X-ray absorption 

and less sample damage, with high contrast quality. One branch of these techniques known as speckle-based methods have 

been well developed and demonstrated on real applications by different groups of developers using their own codes. 

However, there is lack of collective effort to package these methods into an open-source software which is easy-to-install, 

easy-to-use, well-documented, and optimized for speed. Such software is crucial to make the X-PCT techniques accessible 

to generic users and become regular tools. This report demonstrates the effort which implements speckle-based phase-

retrieval methods in Python and GPU.  
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1. INTRODUCTION 

When a sample interacts with a coherent X-ray beam, it will cause reduction in the intensity and change in the direction of 

the beam. The latter effect comes from the phase shift of the X-ray wave. Using the first effect to image samples in 

tomography, known as X-ray absorption-contrast tomography, is a widely used technique at synchrotron facilities. 

However, using the second effect for imaging samples is much more challenging in the near-field region. The resulting 

images, i.e. phase-shift images, can be used for tomography to visualize internal features of samples having small 

differences in densities at high contrast quality. This is the advantage of the technique, known as X-ray phase-contrast 

tomography (X-PCT), over conventional X-ray tomography.  

To retrieve a phase-shift image, there are two basic approaches: measuring change in the direction of a beam then 

performing surface reconstruction; or matching a wave-propagation model to measured intensities. Well-known methods 

using the second approach are propagation-based methods1. These techniques, however, require highly spatial-coherent 

sources and narrow PSF (point-spread-function) detectors, which are important conditions for measured intensities to be 

close to the prediction of wave-propagation models. Many techniques use the first approach and employ specialized optical 

components to measure change in the direction of a beam. Readers are recommended to refer to Momose2 for more detailed 

information about these methods. Speckle-based techniques3-5 are the most recently added to the category. They are very 

simple to use in terms of set-up, data acquisition, and data processing. The idea of the techniques is to measure the shift of 

each speckle-image pixel, caused by a sample, by comparing the images with and without the sample. Because the speckle-

pattern size is larger than the pixel-size of a detector, to resolve the shift for each pixel we use a stack of speckle-images 

scanned at different positions, with and without sample, and analyze the images using a small window around each pixel. 

The use of speckle-based technique for tomography can be depicted as shown in Fig. 1. 

There are a few approaches to acquire and process data of the speckle-based X-PCT technique, called SX-PCT for 

short6-8. SX-PCT has been proven to be practical and demonstrated its advantage on various types of samples by different 

developer groups9,10. They used their own codes, written in Malab and closed source6,9 or Python and open source11-13. 

These codes, however, have not been packaged to an installable software and optimized to run on GPU.  
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To make SX-PCT accessible to generic users and practical for use; it is important that data processing methods should be 

implemented and packaged properly in an open-source software; which is easy-to-install, easy-to-use, well-documented, 

and optimized for speed. This is the key motivation of the work. There are many ways to implement the SX-PCT techniques 

and choices for data processing methods4-11. This work focuses on implementing methods which are practical and robust. 

 

Figure 1. Demonstration of the speckle-based phase-contrast tomography. Projections with and without sample are acquired 

at several diffuser positions (blue stacks). By comparing the two, positional shifts in speckle locations are quantified and 

converted into phase-shift through the sample. Finally, tomographic reconstruction is performed from the processed 

projections. 

2. METHOD 

2.1 Data acquisition 

For producing a random speckle-pattern, a diffuser made of a sandpaper can be used. The purpose of a diffuser is to provide 

a reference-image used to detect local displacements caused by a sample. It is crucial to get a high-contrast reference-

image with the average feature size of a few pixels, e.g. 5-9 pixels. A reference-image with the visibility, calculated as the 

ratio between the standard deviation value and the mean value of pixel intensities, above 10% is good enough for use. For 

high-energy X-ray sources, users can stack sandpapers together or using a box of material powder to improve the contrast 

of a speckle-image. Other practical considerations for setting up an SP-XCT experiment are as follows: 

- The diffuser can be positioned before or after a sample depending on experiment conditions. For example, in a 

parallel-beam system with a highly spatial-coherent source the diffuser can be placed closer to the source than the 

sample to make use of the edge-enhancement effect1 which helps to improve the contrast of the speckle-image. 

- The sample-detector distance should be chosen as a compromise between increasing the displacement effect and 

reducing the edge-enhancement effect caused by highly spatial-coherent sources. 

- There are different ways of shifting a diffuser and acquiring a tomogram at each position. However, using a spiral 

path has been proven to be practical and efficient10,11,14. The distance between two speckle positions should be 

larger than the analysis window, e.g. 5-11 pixels, to ensure that each speckle-pattern in the analysis window is 

completely different. This improves the robustness of methods measuring pixel shifts. Using this acquisition 

scheme, 20 positions of a diffuser is enough to retrieve a high-quality phase-shift image. However, for tomography 

systems with fluctuating sources, higher number of positions, e.g. 30-50, is needed. 

- Due to mechanical error, moving a sample in and out of the field-of-view repeatedly for each diffuser position 

can cause small shifts between the same projections of different tomograms. This problem has a significant impact 
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to the quality of processed data and is difficult to correct. To avoid it, the best scanning approach is to scan all 

positions of a diffuser first, then collect tomograms of a sample at each diffuser position. This approach may 

result in small displacements between the same speckle positions due to mechanical error. However, it is 

correctable by image alignment using a small area of empty space within the sample image. 

2.2 Data processing 

2.2.1 Finding pixel shifts 

The core idea of the technique is to find the shift of each pixel of a speckle-image caused by a sample. This is done by: 

selecting a small window (5-11 pixels) around each pixel of the sample-stack image; sliding this window around a slightly 

larger window (margin ~10 pixels) taken from the reference-stack image and calculating the cost function11,15 or the 

correlation coefficient8,14 between two windows at each position. The resulting correlation-coefficient/cost-function map 

is used to locate the maximum/minimum point where sub-pixel accuracy can be achieved by using a differential approach16 

or a polynomial fitting approach17. The shift of a pixel is the distance from the maximum/minimum point to the center of 

the map. The procedure of finding the shift of each pixel is depicted in Fig. 2. 

Performing 2D searching for every pixel of a 2k×2k image is computationally very expensive which is why using 

multicore-CPU and GPU for computing is crucially needed. An approximate approach to reduce the computational cost is 

to perform 1D search using middle slices in vertical and horizontal direction of image stacks, to find shifts in x and y-

direction separately14.  

 

Figure 2. Demonstration of how to find the shift of each speckle-pixel. 

2.2.2 Surface reconstruction 

The result of the previous step is separated into an x-shift image and a y-shift image, i.e. gradient images. A phase-shift 

image is then retrieved by applying a method of surface reconstruction, or normal integration (Fig. 3). There are many 

available options18 for implementing this step. However, Fourier-transform-based methods19-20 are preferred over least-

squares methods due to their low computational cost which is critical for tomography. The disadvantage of these Fourier 

methods is that the DC-component (average value of an image) is undefined resulting in the fluctuations in background 

between phase-retrieved images. This effect, however, can be corrected (Fig. 4) by using the double-wedge filter as 

described in Ref. [21]. 
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Figure 3. Phase-shift image (c) is retrieved by normal integration using two gradient images: (a) x-direction; (b) y-direction. 

 

Figure 4. (a) Fluctuation of grayscale values in a sinogram caused by the FT-based surface-reconstruction method19. (b) 

Corrected image after using the double-wedge filter21. 

2.2.3 Extracting transmission and dark-field signals 

Another interesting capability of the speckle-based technique is that transmission image (absorption-contrast image) and 

dark-field image (small-angle scattering signal, not to be confused with dark-noise of a camera) can be extracted from data 

together with the phase-shift image. The advantage of extracting the transmission image using the speckle-based technique 

over conventional X-ray imaging is that the image is less prone to the change of intensity profile of a source as shown in 

Fig. 5. 

 

Figure 5. Comparison between transmission images acquired using conventional X-ray tomography (a,b)  and extracted using 

SX-PCT (c,d). (a) Flat-field corrected projection at 0-degree. (b) Flat-field corrected projection at 180-degree showing the 

impact of the change of intensity profile of the source. (c) Extracted transmission-image at 0-degree. (d) Extracted 

transmission-image at 180-degree. 

As presented in section 2.2.1, the speckle-based technique can detect small-angle scattering signal which needs to be 

converted to dark-field image suitable for tomographic reconstruction, i.e. the relationship between dark-field projections 

is linear. There are several ways to convert the signal6,14,22,23. Fig. 6 shows the result of using an approach as described in 

Ref. [11] where the dark-field image is put side by side with the other images for visual comparison. 

All above processing steps are repeated for every projection then the results are used for tomographic reconstruction 

as shown in Fig. 1. 
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Figure 6. All imaging signal retrieved by the speckle-based technique can be used for tomography. (a) Phase-shift image. (b) 

Transmission image. (c) Dark-field image. 

2.3 Implementation 

2.3.1 Design principles 

Methods are implemented in Python due to its rich ecosystem of libraries and supporting tools for packaging, distributing, 

and documenting software. To work with other methods in the pipeline of processing tomographic data, speckle-related 

methods are packaged as a module of the Algotom software21,24. Practical design-principles have been followed in the 

implementation: 

- To ensure that the software can work across platforms and is easy-to-install; dependencies are minimized, and 

only well-maintained Python libraries are used. 

- For high performance computing, making use of GPU, ease of understanding and use; Numba library is used 

instead of Cupy or PyCuda. 

- Methods are broken down into building blocks to be able to run on either small or large memory RAM/GPU. 

More importantly, this design allows users to customize methods or build data processing pipeline.  

Top layer methods, API (application programming interface), for the software are as follows: 

- Reading images from multiple datasets, in tif or hdf format, and stacking them. 

- Finding local shifts between two images or two stacks of images. 

- Performing surface reconstruction from gradient images. 

- Retrieving phase-shift image given two stacks of images. 

- Extracting transmission image and dark-field image. 

- Aligning two images or two stacks of images. 

2.3.2 Building blocks 

A dedicated module in Algotom, named correlation.py, is a collection of methods as the building blocks for the top layer 

methods described in section 2.3.1.  

The first block is a method to generate correlation-coefficient map between two 2D/3D images (Fig. 2). This is the 

core method to find the shift between images. It works by sliding the second image over the reference image and calculating 

the correlation coefficient at each position. There are many formulas to calculate this coefficient. Here, we use Pearson’s 

coefficient as it has been proven to be one of the most reliable metrics4,6,8,9. The method includes low-level implementations 

for specific cases: 2D or 3D input, using CPU or GPU. 

The second block is a method to locate the maximum/minimum point of a correlation-coefficient/cost-function map 

with sub-pixel accuracy where there are two approaches selected: either a differential approach16 or a polynomial fitting 

approach17. At low-level are implementations to handle different cases: 1D or 2D input, using the differential method or 

fitting method. 

The above blocks are for finding the shift of each pixel using a small window around it. This operation is applied to ~ 

2k × 2k pixel. In practice, input data for retrieving a phase-shift image is two stacks of images; each stack is around 20 

images (20 speckle-positions); each image has a size of 2k × 2k. Total shape of the input is 2 × 20 × 2k × 2k with the size 
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of ~300MB (16-bit image). As can be seen, many strategies can be used to parallelize workload. Here we find that 

processing data using chunk-by-chunk of image-rows in one go and calculating the shifts row-by-row in parallel is the 

most efficient way in term of memory management, performance, and code readability. 

As mentioned above, the next building block is a method for finding the shift of each pixel in a chunk of image-rows 

in parallel. The method includes low-level implementations for different cases: 1D or 2D search, 2D or 3D input, CPU or 

GPU computing. For GPU, to reduce the overhead of transferring data and compiling functions, the first two blocks are 

implemented at GPU-kernel level. 

 The top building block is a method for processing full-size images. It includes many options for processing at the 

lower-level blocks. The chunk-size option enables the method to run on either small memory or large memory of RAM or 

GPU. 

 The above blocks are for correlation-based methods. We also implemented another approach which is based on a cost 

function, known as the UMPA method11, using the similar building structure. Other top-layer methods listed in section 

2.3.1 are straightforward to implement either directly or by making use of the methods in the correlation.py module. 

3. RESULTS AND DISCUSSION 

Methods implemented in this work are available in Algotom from version 1.1. The software can be installed using either 

Conda  or Pip. The document page was published at https://algotom.github.io/ with example codes on how to process the 

SX-PCT data step-by-step.  

The software was used to process data collected at beamline B1626 (Fig. 1), K1127 (Fig. 2), and I1228 at Diamond Light 

Source where the I12-data were collected at optimum conditions to give the best quality of reconstructed images possible. 

Details of how data were acquired are as follows: 

- A box of fine sand was used as a speckle generator and can achieve a visibility of 13% at 53keV X-rays with the 

detector-sample distance of 2.2m. A detector with the pixel size of 7.9µm was used. Image-size is 2560 and 2160 

in height and width. The speckle-size is around 8 pixels. The intensity of the beam profile is very stable which is 

an important advantage of I12 over the other beamlines. The sample is a picrite basaltic rock from Iceland. 

- 20 speckle positions following a spiral path with the step of 30 times of the pixel size were used for scanning.  

- Speckle images without the sample were acquired at all positions first. Then for each speckle position a 

tomographic scan of the sample, 1801 projections, was acquired. This strategy ensures that projections at the same 

angle are not shifted between speckle positions as explained in section 2.1. Due to mechanical error, the diffuser 

positions were not the same between the first scan (without the sample) and the second scan (with the sample). 

This problem can be solved by image alignment using free-space areas in each image (Fig. 7). 

 

Figure 7. Demonstration of the impact of image alignment. (a) Small area of an image which is the result of dividing between 

speckle-image with sample and without sample. (b) Same as (a) but after image alignment. 

The following presents how the data were processed:  

- Reference-images for each position are loaded, averaged, normalized (flat-field corrected), aligned, and stacked.  
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- For each angle of tomographic datasets, projections at different speckle-positions are loaded, normalized, and 

stacked. 

- Phase-shift image is retrieved from two previous image-stacks (Fig. 8) using a single function (Fig. 9). Full 

options for choosing back-end methods, surface reconstruction methods, and searching parameters are at the 

Algotom’s documentation page. 

 

Figure 8. (a) Speckle-image stack. (b) Sample-image stack. (c) Phase-shift image retrieved from (a) and (b). 

def retrieve_phase_based_speckle_tracking(ref_stack, sam_stack, 
                                          find_shift="correl", 
                                          filter_name="hamming", 
                                          dark_signal=False, dim=1,win_size=7, 
                                          margin=10, method="diff", size=3, 
                                          gpu=False, block=(16, 16), 
                                          ncore=None, norm=True, 
                                          norm_global=False, chunk_size=None, 
                                          surf_method="SCS", 
                                          correct_negative=True, window=None, 
                                          pad=0, pad_mode="linear_ramp", 
                                          return_shift=False):  

Figure 9. Python function for retrieving a phase-shift image giving two stacks of images. 

- A summary of computing time (in second) for retrieving a single phase-shift image using different options is 

shown in Tab. 1 where the window size is 7 and the margin is 10. As can be seen, there is a huge speed-up of 

computing time, ~ 50 times, if using GPU. 

Table 1. Comparison of computing time using different approaches. 

Method 
Using the correlation-

based methods 

Using the cost-

based method 

Searching 1D 2D 2D 

CPU (32 cores, Intel 

Xeon Gold 6152) 
59 s 2152 s 2637 s 

GPU (Nvidia Quadro 

GV100) 
20 s 44 s 45 s 

- For tomographic reconstruction, phase retrieval is applied to all projections then the sinograms are generated for 

reconstructing slice-by-slice. This step can be manually parallelized for multiple-CPUs or multiple-GPUs to 

reduce computing time. In practice, users may want to tweak parameters and check the results before running full 

reconstruction. This can be done by performing phase retrieval on a small area of projection-images. 

We processed the full size of the data and reconstructed all slices using 3 approaches: the correlation-based method using 

1D and 2D search, and the UMPA approach. Figure 10 shows phase-retrieved images of each approach where they are 

colorized for visual comparison. As can be seen (white frame in each image) the main difference among the methods is 

the DC-component and the background profile. The cause is from the FFT-based surface-reconstruction method20. To 

justify this statement, another surface reconstruction method is used19 and the results are shown in Fig. 11. The nature of 

these methods is that the DC-component is undefined and they are sensitive to boundary conditions18. 
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Figure 10. Phase-retrieved images from three approaches where the FC (Frankot-Chellappa) method20 is used for surface 

reconstruction. (a) 1D-search correlation-based method. (b) 2D-search correlation-based method. (c) the UMPA approach. (d) 

Intensity profiles of each result at locations indicated by the colour lines. 

 

Figure 11. Phase-retrieved images from three approaches where the SCS (Simchoney-Chellappa-Shao) method19 is used for 

surface reconstruction. (a) 1D-search correlation-based method. (b) 2D-search correlation-based method. (c) the UMPA 

approach. (d) Intensity profiles of each result at locations indicated by the colour lines. 

An interesting finding from the comparison is that the 1D-search method is less prone to large defects of the scintillator in 

the detecting system as can be seen in Fig. 12. 
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Figure 12. Comparison between the 1D-search and 2D-search in the area indicated by the red circle in Fig. 11(a) and Fig. 

11(b). (a) x-shift image from the 1D-search method. (b) x-shift image from the 2D-search method. (c) phase-shift image from 

the 1D-search method. (d) phase-shift image from the 2D-search method. 

Figure 13 shows reconstructed images in horizontal and vertical direction from the three approaches where ring artifact 

removal methods24,29 and the FBP reconstruction method30 were used. There are several interesting findings from the 

results. Firstly, the 1D-search method gives less-sharp images than other methods but with better contrast and clearer 

features. There is not much different between the 2D-search method and the UMPA method out of the low-pass component. 

However, the main advantage of the UMPA approach over the others is that three modes of image can be retrieved at the 

same time as shown in Fig. 14. How to determine dark-signal image is still up-to-debate for correlation-based methods. 

For the UMPA approach, dark-signal image is easily to obtain as a part of the model equation. Figure 14 is also a showcase 

for the SX-PCT technique where phase-shift images give better contrast than transmission-signal images (red arrows). The 

technique reveals interesting features of the sample which are mineral olivine31. Because the olivine is a crystal it can 

enhance dark signal as shown in Fig. 14(c,f). Making use of dark-signal images to gain deeper understanding of materials 

is a very promising application of the SX-PCT technique. 

 

Figure 13. Horizontal slice and vertical slice of reconstructed volumes from the 3 approaches: the 1D-search method (a,d); the 

2D-search method (b,e); and UMPA (c,f). 

 

Proc. of SPIE Vol. 12242  122420E-9



 

Figure 14. Horizontal slice and vertical slice of reconstructed volumes from 3 imaging modes: phase-shift image (a,d); 

transmission image (b,e); and dark-signal image (c,f). 

4. CONCLUSIONS 

In summary, we have implemented speckle-based phase-retrieval methods and their supporting methods in Algotom, a 

tomographic open-source software in Python which is easy-to-install. The documentation has been published 

(https://algotom.github.io/) and the source-code is at https://github.com/algotom/algotom. The methods can run on either 

multicore-CPU or GPU. Data can be processed chunk-by-chunk to fit the size of RAM memory or GPU memory. 

Comparing different methods implemented in the software leads to several interesting findings. Firstly, the 1D-search 

method is practical for use, particularly for users not having access to GPU. Secondly, dark-signal image retrieved from 

the UMPA approach is very promising for real applications. Lastly, the low-pass component of phase-shift image is varied 

depending on a surface-reconstruction method used and boundary conditions. This will hamper the post-analysis of 

reconstructed images. A better approach for surface reconstruction is still desirable. 
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