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ABSTRACT

X-ray photon-counting detector (PCD) offers low noise, high resolution, and spectral characterization, represent-
ing a next generation of CT and enabling new biomedical applications. It is well known that involuntary patient
motion may induce image artifacts with conventional CT scanning, and this problem becomes more serious with
PCD due to its high detector pitch and extended scan time. Furthermore, PCD often comes with a substantial
number of bad pixels, making analytic image reconstruction challenging and ruling out state-of-the-art motion
correction methods that are based on analytical reconstruction. In this paper, we extend our previous locally lin-
ear embedding (LLE) cone-beam motion correction method to the helical scanning geometry, which is especially
desirable given the high cost of large-area PCD. In addition to our adaption of LLE-based parametric searching to
helical cone-beam photon-counting CT geometry, we introduce an unreliable-volume mask to improve the motion
estimation accuracy and perform incremental updating on gradually refined sampling grids for optimization of
both accuracy and efficiency. Our numerical results demonstrate that our method reduces the estimation errors
near the two longitudinal ends of the reconstructed volume and overall image quality. The experimental results
on clinical photon-counting scans of the patient extremities show significant resolution improvement after motion
correction using our method, which reveals subtle fine structures previously hidden under motion blurring and
artifacts.

Keywords: Rigid motion, motion estimation, locally linear embedding, helical CT, photon-counting detectors
(PCDs).

1. INTRODUCTION

Motion induced image artifacts are a long-standing problem in X-ray computed tomography (CT), which com-
promises many clinical CT scans. For instances, head CT and cardiac CT often suffer from image artifacts due
to motions of either rigid structures (such as the head) or nonrigid tissues and organs (such as the heart). In this
study, we focus on the rigid motion estimation and associated artifact reduction. The rigid motion of an object
can be equivalently treated as the view-dependent transformation of the locations of the source and detector
pair. Without proper compensation for the motion, the reconstructed image quality will be degraded by the
geometric errors, resulting in blurring, double-edging, and strong streaks. Correction for rigid motion can be
performed in an iterative reconstruction framework, which minimizes a loss function by alternatively updating
image reconstruction and motion estimation until convergence.1 However, this method is slow due to the compu-
tational cost of a large number of iterative reconstructions needed. For reconstruction acceleration, the modified
FDK2 and weighted filtered backprojection (WFBP) 3 were developed to accommodate non-regular geometry for
motion compensation. Along another direction, a powerful parallel searching algorithm based on locally linear
embedding (LLE) was proposed for cone-beam CT,4 which replaces sequential gradient-base optimization steps
and offers a significant speed boost aided by GPU.

The emerging X-ray photon-counting detector technology promises to revolutionize the CT field, with the
recent milestone that the Siemens photon-counting CT scanner received the FDA approval last year. However,
the current photon-counting detector is still far from being perfect,5,6 which brings challenges to the motion

Correspondence: Ge Wang, wangg6@rpi.edu

7th International Conference on Image Formation in X-Ray Computed Tomography,
edited by Joseph Webster Stayman, Proc. of SPIE Vol. 12304, 123042I

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2646714

Proc. of SPIE Vol. 12304  123042I-1



estimation and correction. First, due to the complex manufacturing process, PCDs on the market come with a
significant amount of ineffective pixels as a result of manufacturing cost control. Also, a large PCD array often
consists of tiled small PCD chips. In the tiling process, gaps are formed to give a sufficient room for electronics.
Both the gaps and the ineffective pixels are called bad pixels that fail to record projection values. Often times,
the bad pixels are so many that the missing values cannot be satisfactorily addressed using classic interpolation
methods. As a result, it is difficult for traditional analytical reconstruction to be applied. Second, given a much
higher cost of a PCD than a flat panel detector of the same-area, a helical scan is often performed for an extended
longitudinal field of view (FOV). These two issues in this context make the motion estimation and correction a
unique problem.

In this paper, we follow the state-of-the-art LLE-based motion estimation idea4 to address the above challenge.
In the next section, we describe a LLE-based method for helical photon-counting CT. In the third section, we
report our preliminary results. To conclude the paper, we discuss relevant issues in the last section.

2. METHODOLOGY

2.1 LLE-based motion correction

A rigid motion of a moving object is equivalent to a geometrical misalignment of the source and detector
pair around a stationary object. The goal is to minimize the difference between measured projections and re-
projected projections of an image volume reconstructed assuming estimated motion parameters. Mathematically,
we formulate the optimization problem as follows:

argmin
p,x

∥b−A(p)x∥22 , (1)

where A(p) is a system matrix after incorporating a vector motion parameters p, x and b denote a reconstructed
image and measured projections respectively. The optimization is often performed by alternatively updating p
and x. Since the motion parameters for one view is separable from those for other views, the problem can be
dealt as a set of sub-problems for each view to update estimated motion parameters:

p = [p1, · · · ,pi, · · · ,pN ]T , pi = argmin
pi

∥bi −Ai(pi)x∥22 , (2)

where i = 1, 2, · · · , N denotes the ith view out of the N views in total, and pi is the motion parameters for the
ith view in the form of [tx, ty, tz, θx, θy, θz]

T characterized by six degrees of freedom, describing the translation
and rotation along and around three Cartesian axes respectively.

Different from gradient-based optimization, LLE utilizes a parallel searching strategy by densely sampling a
pre-defined parametric range. The basic idea is that if the sampling grid is sufficiently small, the true vector of
motion parameter should be so close to its K-nearest neighbors in the sampling grid and can be expressed as
the a linear combination of them such that its corresponding projection measurement can also be represented
with the linear combination of the K-nearest reprojected projections associated with the sampled neighboring
parameters and with the same weights, i.e.,

p∗
i =

K∑
k=1

wkp
(k)
i , bi =

K∑
k=1

wkAi(p
(k)
i )x, (3)

where
∑K

k=1 wk = 1, and p
(k)
i is one of the K nearest samples for p∗

i on the grid (p
(1)
i , · · · ,p(j)

i , · · · ,p(S)
i ) with

S samples in total, and p∗
i denotes the ground truth motion parameters. This can be understood in light of the

Taylor expansion of Ai at p
∗
i :

Ai(pi) ≈ Ai(p
∗
i ) + (pi − p∗

i )
T ∂Ai(p

∗
i )

∂pi
, (4)
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Hence,

K∑
k=1

wkAi(p
(k)
i ) =

K∑
k=1

wk(Ai(p
∗
i ) + (p

(k)
i − p∗

i )
T ∂Ai(p

∗
i )

∂pi
)

= Ai(p
∗
i ) + (

K∑
k=1

wk(p
(k)
i − p∗

i )
T )

∂Ai(p
∗
i )

∂pi

If we have p∗
i =

∑K
k=1 wkp

(k)
i , we can easily reach the conclusion:

K∑
k=1

wkAi(p
(k)
i ) = Ai(p

∗
i ), bi =

K∑
k=1

wkAi(p
(k)
i )x. (5)

In practice, sampling a multidimensional grid densely is too expensive. Instead, for each sub-problem we
estimate the parameters of pi individually and sequentially (six stages in total) as an effective approximation.
All sub-problems can be simultaneously solved and updated for each stage. Specifically, for the rth parameter
pir in one subproblem to be updated, the key steps are as follows:

1. Generate a dense sample grid {p(s)
ir |s = 1, · · · , S} for pir;

2. Calculate the reprojected projection grid {(b(s)i ,p
(s)
ir )|s = 1, · · · , S|} by replacing the rth parameter of pi

with the sampled values on the above grid;

3. Find the K nearest neighbors {(b̃(k)i , p̃
(k)
ir )|k = 1, · · · ,K} for bi from the projection grid in terms of the

Euclidean distance;

4. Optimize the weights w = [w1, · · · , wK ]T for the K neighbors to fit the measurement:

w = argmin
w

∥∥∥∥∥bi −
K∑

k=1

wkb̃
(k)
i

∥∥∥∥∥ s.t.

K∑
k=1

wk = 1; (6)

5. Update the estimated parameter as pir =
∑K

k=1 wkp̃
(k)
ir .

Parallel computation can be implemented on GPU in a view-independent fashion for each degree of freedom,
and the whole process can be iterated a few times to reach convergence (please refer to4 for more details).

2.2 Bad pixel masking

Most PCDs contain a substantial amount of bad pixels, including real ineffective pixels from the manufacturer,
the tile gaps between chips, and dead/bad pixels due to degradation over time. These bad pixels produce
unreliable responses and in a much larger number than that of a traditional energy-integrating detector. One
exemplary projection with a 14-chip PCD is shown in Fig. 1a. Since the number of bad pixels is so significant
that a typical interpolation method is inadequate to address the problem without introducing major artifacts.
Thus, bad pixel responses will directly reduce the motion estimation accuracy.

Our strategy to avoid the issue is to turn off the bad pixels with a binary mask and utilize iterative recon-
struction methods to avoid their contribution to the reconstruction and motion estimation. We use two criteria
for detection of bad pixels with a open beam projection data: (1) the temporal mean of the pixel values is a
statistically outlier in the group of all pixels; (2) the temporal variance of the pixel is a statistically outlier in
the group of all pixels. The mask for the bad pixels will be used to exclude contributions from bad pixels during
the volume reconstruction and in the calculation of the fidelity loss in Eq. 6 and facilitate motion estimation and
image reconstruction.
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(a) Exemplary projection and mask (b) Unreliable volume masking

Figure 1: (a) Exemplary projection (top) and its bad pixel mask (bottom); (b) Illustration for the unreliable
volume masking. Any ray through an unreliable portion (marked in blue on the image volume) is unreliable and
contributes to the mask indicating an unreliable area in a projection (marked in blue on the detector) which
should be excluded in the loss calculation for motion estimation.

2.3 Unreliable volume masking

Due to the axial truncation in the cone-beam geometry/helical scan, there are unreliable portions at two longitu-
dinal ends of a reconstructed volume due to data insufficiency, as illustrated in Fig. 1b. Since the reconstruction
of such a region is solely determined by a very limited angular range of projections resulting a severe ill-posed
problem, the strong limited angle artifacts will counter-balance the projection loss (Eq. 1) originated from mis-
alignment and degrade the motion estimation accuracy. The original cone-beam LLE MC method4 does not
consider this defect but it could make a significant difference if it is not dealt with properly.

To minimize the aforementioned unreliability, we utilize a mask to exclude the contribution from the X-ray
rays passing through the two unreliable portions of the reconstructed volume in computing the loss function in
Eq. 6. This mask is generated in the following three steps:

1. Determine the unreliable portions and generate a volume mask (binary, zero for normal and one for unre-
liable voxels);

2. Forward project the volume mask to the projection domain;

3. Threshold the projected results and generate the unreliable volume masks in the projection domain.

There are several different approaches to determine unreliable portions. For example, we can determine
reliability according to the Tam-Danielsson window, or manually select the slice range per noise and image
quality and reserve some margins. In this study, we used the latter one.

2.4 Incremental updating

In our previous work,4 the algorithm directly estimates the motion vectors from an updated reconstruction in
each iteration using the same dense sampling grid. However, the error of the motion estimation is expected to
gradually decease as the algorithm iterates, which is also what we observed in practice. Global searching absolute
values in a large grid may be computationally wasteful in later iterations. Hence, we propose a more efficient
local searching strategy on an incrementally refined grid for relative value; i.e., in each new iteration, we predict
correction to the motion estimation from the last iteration. Since the error is decreasing through iterations, we
gradually shrink the sampling space while maintaining the same number of samples to generate a finer grid for
improved searching accuracy. Furthermore, we use a much smaller number of samples compared to the absolute
global searching to boost the searching efficiency without sacrificing performance.

2.5 Virtual bed removal

In most CT scans, an object to be reconstructed is supported by a bed or a holder, which is static in reference to
the scanning geometry. For example, a couch in a medical CT scanner or a sample holder in a micro-CT system.
In the reconstructed image, the stationary bed or holder shows its sharp edges in a good image quality, regardless
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any object motion. However, during the aforementioned motion correction process, those static structures are
misaligned in reference to the object. In other words, after we compensate for the motion of the object, the
bed or holder will be blurred and degraded in the subsequently reconstructed image. This will prevent the loss
function in Eq. 6 from being correctly minimized.

To avoid this undesired counterbalance effect, we virtually remove the bed or holder from projections, use
the cleaned projections to perform motion correction, and then combined the reconstructed object with the
previously reconstructed bed and holder if needed. The steps for removal of the bed or holder include:

1. Reconstruct an image volume in the initial scan geometry;

2. Segment the bed (i.e., all static portions) from the image volume with a proper margin and generate a bed
mask;

3. Set voxels outside the bed mask to zero in the reconstruction for a bed-only image volume;

4. Forward project the bed-only volume to obtain the bed-only projections;

5. Subtract the bed-only projections from the original projections to obtain the cleaned projections, with bed
removed for motion estimation.

3. RESULTS

3.1 Numerical simulation

First, the effects of unreliable volume masking and incremental updating were investigated in numerical simula-
tion. The additional head image volume data from the visible human project7 was used as a digital phantom,
and re-sampled into isotropic voxels of 0.53mm3 in size. The detector was of 64 rows by 640 columns with an
element area of 1mm× 1mm, and the scanning pitch is 43.13 mm with 984 projections per rotation. To test the
searching ability of our proposed method, we did not add noise initially. Two rotations were done with motions
incorporated with six degrees of freedom, as shown in Fig. 2 (a) where Ti and Ri denote the translation and
rotation along and around the ith axis respectively. These motions caused severe artifacts in the reconstructed
image, as demonstrated in Fig. 2 (b).

For motion estimation, each intermediate image was reconstructed as a volume of 240×240×100 with a voxel
size of 13mm3. Figure 3(a) shows the motion correction results using the LLE-based correction method. Those
images were greatly improved relative to the original one. Despite remaining artifacts, they all came much closer
to the ground truth that is the reconstructed images with perfect motion compensation, as shown in Fig. 2(b).
Figure 3(b) plots the motion curves along view, estimated with the absolute/fixed updating and unreliable
volume masking, against the ground truth. The estimated curves align well with the references, especially for
rotation motion, demonstrating the effectiveness of our LLE-based motion correction method.

The results obtained using different combinations of unreliable volume masking and incremental updating
are compared in Figs. 3(c) and 3(d), including (absolute updating, masking, Ns = 50), (absolute updating, no
masking, Ns = 50), (absolute updating, masking, Ns = 10), and (incremental updating, masking, Ns = 10),
where Ns denotes the size of the sampling grid, and masking means unreliable volume masking. Figure 3(c)
shows the change in the root mean squared error (RMSE) of the forward projections of the reconstructed image
against the measurements with the iterative updating. Note that even with the perfect motion estimation the
RMSE could not reach zero due to the large voxel size used for image reconstruction, and this RMSE is marked as
the horizontal reference line in the figure. In all the four settings, the algorithm converged after 5 iterations, and
the incremental updating with masking method worked the best, although it used a five times smaller sampling
grid than that in the second best setting, which is the setting with absolute updating, masking and Ns = 50.
The full size sampling grid made the absolute/fixed updating with masking scheme perform better than a smaller
sampling grid, and the absolute updating without masking scheme performed the worst even if it used a full size
grid for sampling. To compare the motion estimation accuracy among these methods, we calculated the virtual
spatial positions of the source and detector and virtual normal vector of the detector array assuming a static
patient. The positional and angular errors against the ground truth are plotted in Fig. 3(d). The other three
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Figure 2: Motion parameters associated with the six degrees of freedom (a) and the axial and sagittal views
of the corresponding reconstructions without motion compensation against the perfectly compensated reference
(b), displayed in the window [0, 0.8] and unit of cm−1.

Figure 3: Numerical results of our motion estimation and correction in the four settings, including (1) absolute
updating, without unreliable volume masking, Ns = 50 (abs. wo. mask); (2) absolute updating, with masking,
Ns = 50 (abs. w. mask); (3) absolute updating, with masking, Ns = 10 (abs. w. mask); and (4) incremental
updating, with masking, Ns = 10 (inc. w. mask). (a) The axial and sagittal views of compensated reconstructions
in the settings 1, 2 and 4; (b) the estimated motion curves against the ground true with respect to the view,
obtained in the 2nd setting; (c) the RMSE curves of the re-projections from the reconstructed image against the
measurements during the motion correction iterations; and (d) the positional errors of the virtual source and
detector positions and the angular error of the virtual detector normal against the ground truth.

settings except the no masking one led to closely overlapped curves, while the no masking setting gave a a cupping
effect, as predicted in Subsection 2.3, i.e., significantly larger mis-alignments were involved at the starting and
ending views (corresponding to two ends of the image volume). Those results support the effectiveness of our
proposed techniques described in the preceding section.
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3.2 Physical experiment

The scan of a patient wrist was performed on a MARS Spectral clinical scanner equipped with a PCD array of 14
chips, each of which contains 128×128 pixels of an area of 110×110µm2 per pixel. The helical scan covers a FOV
of 120mm in diameter and 100mm in longitudinal extent, with 373 projections per rotation and 5,713 projections
in total. The source was operated at 120 kVp, 310 µA with 0.25 mm Brass filtration. The source-to-detector
distance and source-to-isocenter distance were 949 mm and 625 mm respectively. We selected one portion from
the dataset of projections for demonstration, consisting of 746 projections (2 rotations, 128 × 1792 × 746) to
test our motion correction method. To minimize the noise influence, the channel with the lowest threshold (i.e.,
counting all photons of energy above 7keV) is selected out of 5 effective channels in total for motion estimation.
The image was reconstructed into isotropic voxels of 1803µm3 per voxel, resulting a volume of 746× 746× 123
voxels. The number of samples was set to 50 for each degree of freedom, and the range for translations in the
x, y and z axes and the range for rotations around the x, y and z axes were defined as [-0.9 mm, 0.9 mm] and
[−2◦, 2◦] respectively. The SART algorithm was coded for reconstruction in 200 iterations. To optimize each of
the six motion parameters, two iterations were performed, and the number of sequential updates was set to 5 for
all the six freedoms (the main loop).

Figure 4 shows the results before and after our motion correction. In Fig. 4 (b), the image is sharper (see
the structures in the red circle) with subtle structures revealed from the blurry clouds after correction (see the
region pointed by the red arrow). Similar comments can be made on Fig. 4 (c), where the blurry double-edge
phenomenon was removed by the motion correction with fine features recovered in the bony region. Figure 4 (e)
also demonstrates improved image resolution. In Fig. 4 (d), weak structures were enhanced in the red circles.
Note that the missing chunk after reconstruction at the bottom right corner in Figs. 4 (b) and (c) is the bed
that was virtually removed.

Figure 5 plots the RMSE of the re-projections of the reconstructed volume against the measured projections
with the bed removed through iterations. The six geometrical parameters was sequentially corrected. The RMSE
dropped rapidly after the first two iterations and then converged gradually, demonstrating the convergence and
effectiveness of our method. Usually, three iterations were enough, and no significant structural difference was
observed between the result with three iterations and that after five iterations.

4. CONCLUSION

In conclusion, we have presented an LLE-based motion correction method for helical photon-counting CT, which
decomposes the motion correction problem into each and every views with respective to individual parameters,
and works iteratively in a highly parallel manner. Our approach excludes bad photon-counting detector pixels,
utilizes unreliable volume masking, incremental updating and incrementally refined gridding techniques synergis-
tically. Major improvements have been made in accuracy and efficiency of motion estimation and correction, as
demonstrated in our numerical simulation and clinical experiments. Most importantly, our clinical study shows
that significant resolution and contrast enhancement can be achieved in the high resolution regime, revealing
subtle bony structures hidden by artifacts using our proposed LLE-based motion correction approach.
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Figure 4: Motion correction for a real photon-counting CT scan of a living patient’s wrist. (a) The reconstructed
image volume before correction; (b) and (c) different axial slices before and after correction (the axial positions
indicated in (a)); (d) and (e) are the coronal view and sagittal views in comparison (the cross-sectional positions
marked in (a)). All the images are displayed in the window [0, 0.8] with the unit of cm−1.

Figure 5: RMSE plots for projection data during the iterations for motion correction.
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