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ABSTRACT

In this paper we outline a general formulation of vector wave interferometry and then use this formulation to
solve the optimisation problem for interferometric coherence. We show that this problem can be reduced to a
singular value decomposition of a non-symmetric complex matrix. We then develop a stochastic scattering model
for an elevated forest canopy and use it to demonstrate application of the optimisation scheme.
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1. VECTOR INTERFEROMETRY

Scalar Interferometry involves forming the hermitian product of complex scalars s and s 2 from two complex
images 1 and 2. Of special significance is a hermitian coherency matrix J defined in equation 1

[s11 [ss* ss*l
J= <1 [s1 S2}> = <1 i> -1)

LS2J LS2S1 s2s2J

From J we can obtain an estimate of the coherence between s and 2 by forming the scalar y defined as

1< s1s; >17= t--- . -2)
i(< sisi ><s2s2>

The higher the coherence the better the phase estimate between complex variables s and We now consider
the vector generalisation of this formulation with a view to optimismg

We begin by defining a coherent scattering vector 1 as shown in equation 3, where Sij is the complex scattering
coefficient for h transmit and h receive polarisation etc..

& = [s SHy S SJT 11' — U4 & - 3)

Under a change of scattering basis, jç transforms to j under a 4 x 4 complex unitary matrix as shown in 3.
Physically such transformations correspond to changes in the selected scattering mechanism in the image [3].

There are 3 important hermitian products formed from the vectors for images 1 and 2 (bi and i2). Two of these
(IT11 and T22) are the standard 4 x 4 hermitian covariance matrices for the separate images [311. The third is a 4 x 4
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complex matrix 12, which contains all the interferometric phase information between polarimetric channels.
These matrices are defined in equation 4

T11 =< kk*T > T22 =< ic2 k*T > 12 < kl;T > -4)

The generalised coherence is a function of these three matrices. In particular, we can construct a single hermitian
matrix T8 as in equation 5

[k11 [Ti11 £121
T8 = <{j2j [kT i2]> <[c2; T2j>

We can use T8 to obtain an expression for the coherence as follows. We begin by defining complex unitary
weights :wi and i'L2 to generate two complex scalars and t2 as shown in 6.

iui=i1 &i -6)

These two scalars correspond to the complex scattering coefficients for scattering mechanisms i and 2.
Equation 5 can now be combined with equation 6 to generate an expression for the 2 x 2 hermitian matrix J which
decouples the vectors and the matrix T8 (equation 7).

[w*T Q1[T11 121[31 ul
J=[OT ;iiL T22j LQ w2i

-7)

where is a 4 x 1 zero matrix. We can now obtain a formal expression for the generalised coherence as

j<T>
T -8)

'I<1iJ.1i ><22
Our task is to find and 2 which optimise this expression based on estimates of the matrix T8. First we
consider the effects that propagation may have on the measurement of the scattering vector i.

2. VECTOR WAVE PROPAGATION

[SAl [P2] [SI

I

Figure 1: Propagation Distortion in Polarimetric Radar

Figure 1 shows how a matrix formulation of wave propagation may be used in Radar backscatter. In
mathematical form we can write the measured scattering matrix from point A as

SA=P2SP -9)
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where the transpose operation follows from wave reciprocity and the propagation matrix P2 can be written in the
form of a matrix exponential as follows.

F cos a sin a e8 1 [e1r U3 I32 )

P = . = e 2 (cosh v a +smhV a.n) - 10)2
[ a e cos a j [ o e2nj 0 —

In equation 10 (o ) are the Pauli matrices defined as

[1 0-i [1 0 1 [0 fl [0 —ii

c:To=Lo ij 1=[o —ij 2[1 oj [i oj

The angles a and are the Deschamps parameters of the eigenpolarisation state on the Poincaré sphere [5] and fEi
and 2 are the complex wave numbers for propagation of these states (representing both attenuation and phase
shifts).

The angle v is generated by the differential constant v = t3dfff r = (f3 i — 132)r. Note that the interferometric
information related to range dependent phase effects is contained in both the determinant and in the angle v.

Using the matrix identity in equation 11, we can re-express equation 9 in terms of target vectors as shown in
equation 12

ABC=A®CTi -11)

kB P4fi k = iA '4A 4J? kB - 12)

where A and B are the two antenna positions (figure 4), is is the target vector and the unitary matrices Pzt and
4B are given by

'4A e11+J32)(h VAaQ + sinh VAO.flA) ® (cosh VAcTQ + sinh VAa.flA)

-13)

4B eir212)(coshvBao +S1flhVBO.flB)®(COShVBaO +SfflhVBa.flB)

To generate a vector interferogram we form the complex outer product in equation 14

AB kA.&B = 14A L%ii '4B = 14A TP4B -14)

P4 = e0(cosh2v y + sinhvcosh v(2ny1 +ny2 + n y)
- 15)

+ sinh2 v(ny4 + ny5 + nf6 + nnr7 +nn78+ 2nn y))

where 0= (J + J32)r or in a simplified general form as

16)
rn=O

where the 10 basis matrices Im are traceless hermitian and are defined in figure 2. These matrices are obtained by
straightforward direct product expansions of the Pauli matrices.
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Generally we must now multiply together two expressions of the form shown in equation 15 to generate equation
12. We can simplify a great deal by making one important assumption about the propagation channel. We are
going to assume that the eigenpolarisations are identical for the measurements at A and B so that the only
changes between the two measurement points are due to the change of range r — r + z. In this case the only
changes from Po to p413 are the determinant and angle v

With this in mind we can write the general form of the desired unitary matrix as

4A '4B =e'(coshVAcYO + sinh VAa.flA) ® (cosh VAcTO + sinh VAa.flA)
17)

.(cosh VBlO shili VBa.flA) ® (coshva0 — sinh VBQ.UA)

The important result to note is that when we expand this expression, we can express equation 17 as the matrix
exponential of a sum of only 3 basis matrices so that we have the alternative and very much simplified
parameterisation shown in equation 18 where the three matrices 'y to y3 are defined in figure 2.

110001 Fi000l [01101 [O—i—-iOl [10 001
to 1 0 01 10 0 0 0 Ii 0 0 ii Ii 0 0 —ii 0 —1 0 01

T010 o i l o 0 0 I ?211 0 0 il '1j o 0 —ii '10 0 —1

Lo o o ii [0 o o —ij Lo i i oj Lo i i oj [o o o ii

[0 0 0 ii [0 0 0 —ii 10 1 1 0 1 [0 —i —i 01 [0 0 0 —il

to o 1 ol to o 1 ot Ii 0 0 —it Ii 0 0 it to o o ot
'to i 0 ot 't 0 i o 0 1 0 0 it tj 0 0 jt tO 0 0 0

I_
i o 0 oj [_i o 0 oj [o —i —i oj [o —i —i oj [ o o oj

Figure 2: Basis Matrices for Polarimetric Interferometry
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This result permits us to re-write the basic equation of vector Radar mterferometry in the parametric form shown
in equation 19

iLA e ei(51E2Y2+) lcD -19)

where the Cj are complex constants.

3 SIMPLIFIED VECTOR PROPAGATION MATRIX

In the above section we have developed a general theory of coherent vector wave propagation. We see that much
of the complexity arises from the differential propagation constant i.e. from the difference in complex propagation
between the eigenpolarisations for the medium. In many practical instances this difference will be small. To help
analyse such a case we can define an equivalent differential wavelength as

12 -20)—
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which shows that as Xi = ?2 then Xcliff tends to infinity. If we can then assume that the product diff r << 1 then
the hyperbolic functions in 15 can be approximated by the first terms in their series representation. Physically we
are restricting attention to problems where the thickness of the medium is small compared to the dfferentia!
wavelength scale.

In this case we can use cosh dfff r 1 and sinh diff r — 1diff r so that we can write the propagation matrix
(equation 15) in the simplified form

P4 =e'(y0 +3r(2ny1 +ny2 +ny3)) -21)

and so the general 4 x 4 propagation matrix is of the form

[
1 + 23n,r 3r(n —in) ft5ffr(n — ins) 0

P4=e)f3(.) fJ j -22)

L o fffr(n + in) 3r(n +in) 1 —2nr j
where r is the distance travelled, fdfff the complex differential wavenumber and ii is a three element vector
indicating the direction in Stokes space of the orthogonal eigenstates for the medium. In the simplest case we
have h and v as propagation eigenstates so n = (1,0, 0) giving

[1+23thffr 0 0 0 1

•1 0 0
P4 =e'1 0 1 0 -23)

[ 0 0 0 1—2fffrj

This represents the simplest form of the vector propagation matrix in a medium with h and v as eigenstates and a
thickness small compared to the differential wavelength scale. In many practical cases we may further ignore the
perturbation terms on the diagonal in which case P4 reduces to a complex scalar times the identity matrix. We
now use such an approximation to generate a model for coherent vector scattering from. a vegetation layer.

4. CANOPYPENETRATION MODEL

In this section we consider an electromagnetic model for the backscatter of Radar signals from forestry and other
vegetation. Figure 4 shows the key elements of this model. We assume the wave propagates through a vegetation
layer of thickness ri and then interacts with a scatterer which may be the ground, a point scatterer or a ground
trunk interaction. We assume a tenuous particle cloud model for the canopy but allow the particle scattering to
vary with r and for the particles to be anisotropic in shape and have different orientation distributions. We further
assume the hidden scatterer is characterised by its position rt and coherency matrix T.

In order to obtain a vector interferometric model we require an explicit expression for the 8 x 8 hermitian matrix
T8. This we can generate in 3 stages:

• Stage 1: Propagate the wave up to range r =ro.

• Stage 2: Wave is backscattered at r =ro by a coherent vector random process i

• Stage 3 : Propagate the scattered wave back to the radar using the transpose of the matrix in Stage 1
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If we apply this model as shown in figure 3 then we obtain the following formal expressions for the three
elements of the matrix T8.

Vegetation Free Space Scatterer

1 P(ro)

P(ro)

J__ ___ —
r=O r=rl r=rt

r = ro

Figure 3: General Canopy Propagation Model

— [T1, 121 /[k11 T T \
=

;:P4A(i:)
i(r) dr+P4A(rT) iT

8 [*i T 1\[k I [ 2 ]/
24)

12 22 —2
i2 f14B() k(r)dr+P4B(rT) iT

Using the simplest scalar approximation for propagation through the canopy (equation 23 with 3djff =0), we can
simplify 24 so that the P matrices become complex scalars and we obtain a more 'familiar form for the complex
vectors ii and 12 as

1 = e2'iç(1) dr1 + e21TkT 1c2 = f e22k(2) dr2 + iT - 25)

There remain two key issues to resolve before we can evaluate T8: the first is purely geometrical (under the scalar
propagation approximation) and involves calculation of an effective propagation constant based on the range
difference f211 and its relation to the surface co-ordinates shown in figure 4. The second involves evaluation of
the statistical polarimetric averaging implicit in the <...> brackets in equation 24. We now deal with these two
issues separately.

5. EFFECTIVE PROPAGATION CONSTANT

The first problem is to relate the change in range throughout the scattering volume to the baseline radar co-
ordinates and a reference surface coordinate system. Figure 4 shows the geometry, where (m,n) are the radar
range and cross range co-ordinates and (z,y) the surface reference system. B is the normal component of the
baseline and the angle 0 is the mean angle of incidence onto the surface.

When we use equation 25 to evaluate T8, the matrices Til and T22 are not sensitive to the imaginary part of the
propagation constant , only to the real part which causes attenuation of the wave as it propagates. On the
other hand the off-diagonal matrix 1)12 involves complex scalars of the form exp(-iJ .(ri- r2)). It is just such
terms which we wish to exploit, since they give rise to sensitivity to small height changes in the scatterer position.
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Figure 4: Geometry for INFSAR

If we make a small angle approximation then R>> B and the complex phase term has the simplified form

_____ _____ - 26)

where we have used the approximation e B/R and the co-ordinate m is defined in figure 4. Note that for
simplicity we are ignoring noise and temporal decorrelation effects and considering only the effects of baseline
decorrelation. Noise will have no polarimetric structure and so remains unchanged in its analysis from scalar
theories. Temporal decorrelation is an important effect in repeat pass interferometry which we will deal with in a
separate paper.

Now transforming to the surface reference co-ordinates we can express 26 in the modified form exp(-i (y. z))
where

(y, z) =
y(

21Bcos 0
2sin eJ + 2fjBsin

9
sin eJ - 27)

where we have further included the possibility of making a wavenumber shift between processing the two
images [2]. As is apparent from 27, we can always remove the dependence of the phase 4 by choosing A3
based on the geometry of the system so that

L\j= -28)
RtanO

Jn this case the interferometric coherence depends only on the height of the scatterers above the reference plane
(the z co-ordinate in figure 5) i.e. we need consider only the volume scattering contributions as opposed to the
surface contributions, which by definition lie in the reference plane and can be compensated by use of the spectral
shift in 28.

To study decorrelations in the 'z direction only, we define an effective propagation constant using 27 and 28 so
that

= 2B -29)Z RsinO
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In this way the model in figure 3 can be reduced to a one dimensional model for wave propagation through a
canopy. By employing a change of wavenumber between Ji and i2 (according to 29) we can then study the
polarimetric coherence properties of such a medium.

6. POLARIMETRIC VOLUME STATISTICS

In the above analysis we showed that under a scalar approximation, propagation effects may be reduced through
suitable signal processing to a simple scalar shift in wavenumber. This part is already well known in the literature
[2,4]. However, the polarimetnc behaviour of the canopy depends on the statistics of the ivector as a function of
z. This behaviour governs the polarisation dependence of coherence and so is of prime concern to us. In this
section we outline a model for such behaviour.

This model is intended to illustrate how polarimetry can make a significant difference in the observed coherence
from such a volume. It is to be made as simple as possible yet must contain sufficient complexity to represent the
polarimetric behaviour of a volume. For this reason we reject at this stage a full vector transport approach,
although such a model may be useful for more detailed analyses [4]. Instead we adopt a simplified three level
scattering model which will nonetheless contain enough physics to demonstrate how polarisation can make such
a large difference to the interferometric coherence. The model is shown schematically in figure 5 and comprises
the following elements:

Level 1 : The canopy is modelled by single scattering from a cloud of electrically small anisotropic particles with
random orientation distribution. The particle shape may be varied from prolate (needles and twigs) through
spherical to oblate (leaves). The position of these scatterers is assumed to be uniformly distributed in the range z —
0 to z =z (see figure 5). This model gives rise to a random vector isv defined as

[1 0 0 1 [cosal

ic = U(O) ic = 0 cos2O sin2O sina - 30)

[0 —sin 20 cos20j [ 0 j
where 0 is a random variable (the particle orientation) and x is a deterministic parameter governing the particle
shape (a = 0 is a sphere a =45 a dipole). The simplest approximation is for 0 to be uniformly distributed in the
range 0 to it.

Level 2 : Within the canopy we assume there is a spatially localised scatterer representing the fixed branch! trunk
structure. This scatterer is modelled by a deterministic scattering mechanism

F COSaB

iB sin fX COSfB - 31)

Lsina sin f3 j

where again oq determines the type of scattering mechanism and 1B the (fixed) orientation of the scatterer. The
scatterer position is assumed to be at z 1/2 with a uniform variation Az where Az <<zi (see figure 5)

Level 3 : Beneath the canopy we model the effects of the ground or a ground! trunk interaction by locating
another scattering mechanism

[ COSa 1

= aGI SrnaGCOSPG I - 32)

S11113G i
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This mechanism can be perfectly general, ranging from a Bragg surface model to a dielectric dihedral mechanism,
representing a ground-trunk multiple scattering effect. Again we assume this scatterer is located at position z =Zg

LZg where Azg << Zg.

z zb

I. K

z=O z=zl z=zg

Level I Level2 Level 3

Figure 5 : Simplified 1-D Canopy Model

Note that propagation attenuation effects are simply modelled at this stage by varying the relative amplitudes ap
aBandaG.

This 1-D random model may now be used for numerical Monte Carlo simulation of polarimetric interferometry
data. It can be used in various forms to simulate situations where the optimum coherence arises through
orthogonality of the scattering mechanisms in the branch and ground layers. This case can be used as a simple test
of the optimisation eigenvalue procedure to validate its performance in an ideal' situation before applying it to
experimental data. The coherence values so obtained may also then be compared with conventional HH and VV
estimates to illustrate the processing gains to be had by employing a full polarimetric sensor in interferometric
applications.

In addition, the model may be used to establish the possibility of using the optimisation algorithm to obtain
estimates of canopy height, without the need for multi-frequency sensor operation. This is a very important
potential application, the success of which depends primarily on the difference between oqj and oj.

7. OPTIMISATIONOF COHERENCE

While much work has been carried out on optimisation in polarimetry [5], most of it has been addressed to
noncoherent imagery. Hence we need to reconsider carefully the formulation of a coherent (i.e. phase preserving)
optimisation problem. In order to solve the coherent optimisation problem, we must maximise the modulus of a
complex Lagrangian function L defined as

L = W;i232 + X1 (;TT _ i)+ '2 (;TT i) 33)

where 24 and 22 are complex multipliers introduced so that we can maximise the numerator of equation 8 while
keeping the denominator constant. We can solve this maximisation problem by setting partial derivatives to zero
in the usual way. We can then solve the resulting matrix equations to obtain 2 and wi. the optimum
interferometric scattering mechanisms in images 1 and 2 as
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T c T R2 2 l2 2
T R2T = 1 34)

Here we have two 4 x 4 complex eigenvalue problems for the vectors and 2• This constitutes a new kind of
coherent decomposition theorem [3] into 6 scattering mechanisms, 3 from image 1 and 3 from image 2, which
have the closest possible relation to point targets in the data.

8. SINGULAR VALUE (SVD) INTERPRETATION

If we write the two hermitian matrices Til and T22 in terms of their eigenvalue decompositions [3], then they
and their inverses can be expressed in terms of square root matrices as shown in 35

T =uuT = uj-:-j::u:T =

T =uu; ZTT 35)

where x = 1,2, U is the matrix of eigenvectors and Z is a diagonal matrix with real diagonal elements. The
significance of this result lies in the fact that we can transform the complex vector is to a new basis defined by

r— *Tic = jY:U Ic =jT k - 36)

This represents a shift into the orthogonal scattering mechanisms represented by the eigenvector matrix U>,
weighted in amplitude by the reciprocal of their respective eigenvalues. Physically this represents a whitening
process for the vector is.

We now apply this transformation to equation 34 to obtain for the optimum weight vector 2 the modified
equation 37 where fl is a 4 x 4 complex matrix. The final form of equation 37 is a classical hermitian eigenvalue
problem for the eigenvectors 2'. However, the eigenvalues of this matrix (which all must be real since ITE*Tfl is

hermitian) are 2122*, the same as those for the complex matrix T22 12 T11 12.

Hence we have shown that the eigenvalues in equation 34 are real and that the optimum value of the Lagrangian
function L therefore corresponds to the maximum eigenvalue Xl?2*. Note that in equation 37 we are essentially
solving the optimisation problem in a basis such that T8 has the special form shown in equation 38 where L is a 4
x4 identity matrix and fl is defined in 37. In this case the modified Lagrangian function is given by equation
39, which has the form of a classical singular value decomposition for the complex matrix fl.

T fT fT*Tfrr 12J232 =

fl*T 2l2 2
* - 37)= (J 1fiT ) ( Y2'

Physically we are then whitening the signals so as to perform speckle or 'noise' interferometry between the two
images. The optimum values of speckle coherence are then given by the singular values of the matrix H.
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['4 Hi
T8=[fl*T i4j

-38)

) -39)

9. INTERFEROMETRIC PHASE EXTRACTION

The optimum values of coherence are obtained directly as the square root of the real eigenvalues in equation 34.
However we also wish to obtain estimates of the phase of the interferogram. In principle this is straightforward,
from equation 6 we have

= arg(ji1ji) =arg(Tj1jçT2) - 40)

where i and 32 are obtained as eigenvectors in equation 34 and J and Js2 are the complex scattering vectors for
a given pixel in the co-registered images. However, one note of caution is required. The absolute phase of the
eigenvectors is not uniquely defined by 34 and so we must add a condition which fixes the phase difference
between i and iL2 uniquely. One approach would be to set the phase of one element of the vectors to be zero,
for example the first element. However, this is unsatisfactory since in some circumstances this element may be
zero. A better approach is to use equation 40. Here we see that physically the interferometric phase should all be
contained in the vectors ki and i2 and hence a sensible constraint to employ is as follows

arg(T2) = 0 - 41)

This may be used to define the mterferometric phase, apart from the case when wi and are orthogonal.

10. APPLICATION TO EXPERIMENTAL DATA

In order to solve the optimisation problem in equation 34 we first need an estimate of the matrix T. This we must
obtain from the calibrated S matrix data itself [3]. The estimates for these parameters can be obtained by N-look
complex averaging as shown in equation 42

T1iNk1i T22=2iT 12NJi&1i2 -42)

We have analysed a mixed forestry! agricultural scene from the SIR-C data base. The optimisation was applied to
L-band fully polarimetric repeat pass mterferometric data in order to investigate the coherence gains to be had by
employing coherent polarimetry.

Figure 6 shows the coherence values obtained as a result of the optimisation. We show four overlapping
histograms of scene coherence. For reference we provide HH HV and VV coherence and then the coherence
corresponding to the maximum eigenvalue of equation 34. We see that significant gains can be had by employing
polarimetric processing.

11. CONCLUSIONS

In this paper we have derived a general formulation for coherent interferometry using polarised waves. We have
then solved the coherent optimisation problem to obtain the optimum scattering mechanisms to use in order to
extract the best phase estimates. We have further developed an electromagnetic scattering model which can be
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used to explain the physical origin of these mechanisms. From this it seems that fully polarimetric, single
frequency mterferometric data is sufficient for the extraction of important forest data such as canopy height. This
contrasts with other methods suggested for this task, which generally involve multi-frequency measurements.
The main requirement is to obtain some canopy penetration and so low frequency operation is desirable. We have
validated these ideas using L-Band data from the SIR-C mission.

In conclusion we have seen that the singular value spectrum of a 4 x 4 complex matrix may be used to decompose
polarimetric interferometric problems into a set of coherent scattering mechanisms. Thus we have essentially
developed a new class of coherent decomposition theory [3].

Figure 6: Interferometric Coherence Histograms for L-Band SIR-C data
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