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ABSTRACT

This paper investigates important properties of acquisition receivers that employ commonly used serial-search
strategies. In particular, we focus on the properties of the mean acquisition time (MAT) for wide bandwidth
signals in dense multipath channels. We show that a lower bound on the MAT over all possible search strategies is
the solution to an integer programming problem with a convex objective function. We also give an upper bound
expression for the MAT over all possible search strategies. We demonstrate that the MAT of the fixed-step serial
search (FSSS) does not depend on the location of the first resolvable path within the uncertainty region, thereby
simplifying the evaluation of the MAT of the FSSS. The results in this paper can be applied to the design and
analysis of fast acquisition systems in various wideband scenarios.
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1. INTRODUCTION

Wide bandwidth transmission systems have emerged as a ubiquitous wireless technology due to their advan-
tages over traditional narrowband systems and have received considerable attention from the military, commer-
cial, and scientific sectors [1–3]. Wide bandwidth transmission systems provide low probability of detection and
interception, and allow secure communication in wireless networks. They operate well in extremely challeng-
ing environments, such as dense urban, confined, and dense multipath areas, in which ordinary communication
systems may fail to provide reliable transmission. Due primarily to their fine delay resolution properties, wide
bandwidth signals are robust against fading and are able to provide accurate positioning.

One of the most common forms of wide bandwidth signaling is to employ spread-spectrum techniques. A
spread-spectrum receiver must perform a sequence synchronization, which is required before commencing any
communication between the end points. The synchronization process occurs in two stages: the acquisition stage
and the tracking stage [4–7]. Synchronization time greatly depends on how the receiver performs the acquisition
stage, and the acquisition requirement may even limit the capacity of a wireless network [8]. Thus, this paper
focuses on the issues related to acquisition.

During the acquisition stage, a receiver performs several tasks. It coarsely aligns the locally generated
reference (LGR) sequence with the received signal sequence by testing whether the LGR phase is within the
required accuracy of the received signal sequence phase. If not, the receiver will set the new LGR phase according
to some prescribed strategy. If the LGR phase is within the required accuracy, the receiver will enter the tracking
stage, finely align the two sequences, and maintain the synchronization throughout the communication. In
general, the goal of the acquisition system is to minimize the mean acquisition time (MAT), the average duration
to complete the acquisition stage.
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Important parameters associated with the acquisition stage are the total number Nunc of phases (cells) to be
tested and the number Nhit of correct phases (in-phase cells). The expression for Nunc is given by

Nunc = Tunc/Tres, (1)

where Tunc is the range of the phase delay’s uncertainty and Tres is the accuracy with which the receiver needs to
resolve the phase delay. Without loss of generality, cells are indexed from 1 to Nunc, and the uncertainty index
set

U � {1, 2, 3, . . . , Nunc} (2)

denotes a collection of cells to test. Among these Nunc cells, Nhit cells correspond to the in-phase cells. The set
Hhit ⊂ U of in-phase cells depends on the phase delays of the resolvable paths, associated with the operating
environment.

The set of in-phase cells for a dense multipath channel can be characterized as follows. In such a channel,
propagation paths tend to arrive in a cluster [9–12]. As a result, if a random variable B ∈ U denotes the cell that
corresponds to the delay of the first propagation path, the set of in-phase cells conditioned on B = b is given by∗

Hhit(b) � {b, b ⊕ 1, . . . , b ⊕ (Nhit − 1)}. (3)

Here, the symbol ⊕ denotes the modulo Nunc addition defined by x⊕ y � x + y − lNunc for some unique integer
l such that x + y − lNunc ∈ U .

For wide bandwidth transmission systems, achieving acquisition in a reasonable amount of time can be a
very challenging task. In particular, the number Nunc of cells that the receiver needs to test can be very large
for a wide bandwidth transmission system, since the quantity 1/Tres in (1) is proportional to the transmission
bandwidth. This challenge necessitates an approach to improve the MAT.

One important approach to improve the MAT is to use an intelligent order to test cells. A search order can
be described by a permutation function π of a set U . The set of all possible search orders is given by

P =
{

π
∣∣∣π : U → U is a permutation function and π(1) = 1

}
, (4)

where the condition π(1) = 1 simply removes some redundant permutations from P.

Search orders that have been used in the literature include the conventional serial search (CSS) [13, 14], the
fixed-step serial search (FSSS) [15–19], and the bit-reversal search [15–18]. In general, search orders affect the
MAT, and the notation E {TACQ(π)} denotes the MAT as a function of a search order π.†

For a given π, the MAT can be evaluated by using flow diagrams [18–22], each corresponding to a different
possible position B = b of the first resolvable path. The tuple (π, b) ∈ P × U characterizes the structure of the
flow diagram, and we refer to this tuple as a description. Note that the flow diagram has one absorption state
representing the event of successful acquisition. The average time to arrive at the absorption state is known as
the absorption time. This quantity is important and closely related to the MAT.

Although the expression for the MAT, E {TACQ(π)}, can be evaluated for a given π [18–23], important prop-
erties of the MAT cannot be derived easily. For example bounds on the minimum MAT, minπ∈P E {TACQ(π)},
are difficult to obtain from the direct optimization over the set of search orders P. The difficulty arises from the
fact that the conventional expression of the MAT does not reveal its dependence on the search order π explicitly.
To alleviate this difficulty, we propose to transform the set of descriptions into the set of spacing rules.‡ It
will be apparent that this transformation discloses important properties of the absorption time and enables the
investigation of the implications of the absorption time’s properties for the MAT.

This paper investigates important properties of the MAT for wide-bandwidth signals in dense multipath
environments. Contributions of the paper are as follows:

∗To emphasize the dependence of Hhit on B = b, we will explicitly write Hhit(b) as a function of b.
†The acquisition time is a random variable, and the randomness arises from noise, fading, and, possibly, a randomized

decision rule at the detection layer.
‡Our approach follows the general philosophy of solving difficult problems in the transform domains [24].
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• a transformation of a set of descriptions into a set of spacing rules,

• a proof that the absorption time expression in the transform domain is of a quadratic form with a positive
definite Hessian matrix,

• a proof that the MAT is lower bounded by the solution of an optimization problem, which can be solved
algorithmically using well-known methods in convex optimization,

• an explicit upper bound expression for the MAT, and

• a simplification of the MAT expression when the FSSS is employed.

The results here are valid in a broad class of fading conditions, receivers’ implementations, and operating envi-
ronments.

This paper is organized as follows. Section 2 outlines the system model. Section 3 derives the absorption
time expression in a transform domain. Important properties of the absorption time and important properties
of the MAT are proved in Section 4 and Section 5, respectively. Section 6 concludes the paper and summarizes
important findings.

2. SYSTEM MODEL

We consider a receiver that employs a widely used serial-search strategy [13–23]. The sequence of phases or
cells that the receiver tests during the acquisition stage is given by

π(k), π(k + 1), . . . , π(Nunc), π(1), π(2), . . . , π(Nunc), π(1), π(2), . . . (5)

where π(k) is the first cell that the receiver examines. The subsequence {π(i)}i=1...Nunc in (5) is repeated to
illustrate the fact that, due to noise and fading, the receiver may take several rounds to test the cells before it
finds a correct cell.

Search orders that have been used in the literature are shown in Fig. 1. Note from the figure that a search
order controls the arrangement of non-absorbing states in a flow diagram. The CSS [13,14], where the consecutive
cells are tested serially, corresponds to the search order

π1(i) = i. (6)

The FSSS [15–19], which skips NJ ≥ 1 cells after each test, corresponds to the search order

πNJ(i) = 1 ⊕ (i − 1)NJ. (7)

Note that NJ and Nunc are required to be relatively prime, so that πNJ(·) in (7) is a permutation function and,
consequently, a member of P. Clearly, the CSS π1 is a special case of the FSSS πNJ with the step size NJ = 1.
The bit-reversal serial search [15–18], where the receiver tests the cells in a random-like order, corresponds to
the search order πR, defined as follows. For i �= j,

πR(i) < πR(j) ⇔ rev(i) < rev(j), (8)

where rev(i) is the reversal of the �log2 Nunc	 binary digit representation of the integer i − 1. Equation (8)
specifies the unique order of Nunc cells in the uncertainty index set: assigning the cost rev(i) to cell i and
arranging the cells in ascending order according to their costs.

A flow diagram represents the details of the acquisition stage, such as the set Hhit(·) of correct cells, the search
order being employed, and the durations and the probabilities associated with the signal detection procedure.
Fig. 2 depicts a flow diagram with a generic search order π. The important details of the flow diagram are as
follows. The flow diagram contains Nunc +1 states: one absorbing state, Nhit states of type H1, and Nunc −Nhit

states of type H0. The absorbing state ACQ represents the event of successful acquisition. Each H1-type state
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Figure 1. A receiver tests the cells according to the search order: (a) a generic search order π; (b) the search order π1

of the CSS; (c) the search order π2 of the FSSS with the step size NJ = 2; (d) the search order πR of the bit-reversal
serial search.

corresponds to an in-phase cell, while each H0-type state corresponds to a non-in-phase cell. Conditioned on
B = b, the set of H1 states in (3) can be written in terms of π as

{π(k1), π(k2), . . . , π(kNhit)} = Hhit(b) (9)

for some unique integers 1 ≤ k1 < k2 < · · · < kNhit ≤ Nunc. In a flow diagram, those H1-states π(ki) have
transition paths to the absorbing state.

The probability that the receiver begins a test at any cell is equal to 1/Nunc. This uniform probability
indicates that the receiver has no a priori knowledge of the location of a correct cell. The transition paths’
parameters PD, PM � 1−PD, τD, τM, and τP are effective probabilities and durations associated with the signal
detection procedure. For the purpose of MAT calculation, these parameters can be derived from a generic path
gain HD(z) from an H1-state to ACQ, a generic path gain HM(z) from an H1-state to the adjacent non-absorbing
state, and a generic path gain H0(z) from an H0-state to the adjacent non-absorbing state [16]. In turn, the
details of the signal detection procedure determine HD(z), HM(z), and H0(z) [20–22]. With all these features,
a flow diagram is a single-absorbing-state Markov chain, having transition probabilities and transition times
written in polynomial forms.

Flow diagrams are used to find the absorption times and the MAT. The MAT is a convex combination of the
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Figure 2. A generic flow diagram for the serial search with an arbitrary search order π contains Nunc + 1 states. The
state labeled ACQ is the absorbing state. The states in thick circles are H1-states, corresponding to the in-phase cells.
The remaining states are H0-states, corresponding to the non-in-phase cells.

absorption times and is given by

E {TACQ(π)} =
Nunc∑
b=1

E {TACQ(π) |B = b}︸ ︷︷ ︸
�f(π,b)

·Pr {B = b}

=
Nunc∑
b=1

f(π, b) · Pr {B = b} ,

(10)

where f(π, b) denotes the absorption time of the flow diagram with a search order π and the set Hhit(b) of
in-phase cells. A conventional approach of finding the absorption time yields the absorption time expression

f(π, b) =
1

Nunc

d

dz

(∑Nunc
k=1

∑Nunc
i=1 Hb

π(i⊕k)(z)
∏i

j=1 Hb
π(j⊕k)(z)

1 −∏Nunc
i=1 Gb

i (z)

)∣∣∣∣∣
z=1

, (11)

where the polynomials Hb
i (z) and Gb

i (z) depend on the path gains and equal

Hb
i (z) =

{
PDzτD i ∈ Hhit(b)
0 otherwise,

and

Gb
i (z) =

{
PMzτM i ∈ Hhit(b)
zτP otherwise.
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Equation (11) follows from a loop-reduction technique, which is used to find the MATs in [18–22].

Although the expressions (10) and (11) are suitable for finding the MAT for a given search order, they are
not suitable for deriving some important properties of the MAT. Note that the expression (11) does not reveal
how the absorption time depends on π explicitly. Thus, it is unclear how one can derive or bound the minimum
MAT, minπ∈P E {TACQ(π)}, and the maximum MAT, maxπ∈P E {TACQ(π)}, using the expressions (10) and (11).
To alleviate this difficulty, we transform the set of descriptions into the set of spacing rules, following the general
philosophy of solving difficult problems in the transform domains [24]. It will be apparent in the following
sections that this transformation provides us with important properties of the MAT.
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Figure 3. The spacing rule m = [m1 m2 . . . mNhit ]
T characterizes the structure of the flow diagram.

A spacing rule is an element of the set

S =
{

[m1 m2 . . . mNhit ]
T

∣∣∣∣
Nhit∑
i=1

mi = Nunc − Nhit; ∀i, integer mi ≥ 0
}

. (12)

A flow diagram with a spacing rule m � [m1 m2 . . . mNhit ]
T has an H1-state, which is followed by m1 H0-states,

which are followed by another H1-state, which is followed by m2 H0-states, and so on (see Fig. 3). Clearly,
the sum

∑Nhit
i=1 mi must equal the number Nunc − Nhit of H0-states. Like a description (π, b), a spacing rule

characterizes the structure of a flow diagram and strongly affects the absorption time.

A relationship between a description (π, b) and the spacing rule exists. In particular, a flow diagram with a
search order π and the set Hhit(b) of in-phase cells has the spacing rule [m1 m2 . . . mNhit ]

T , defined as follows:

mi �
{

ki+1 − ki − 1 i = 1, 2, . . . , Nhit − 1
k1 + Nunc − kNhit − 1 i = Nhit
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for the unique integers 1 ≤ k1 < k2 < · · · < kNhit ≤ Nunc satisfying (9). A mapping from a description (π, b) to
the corresponding spacing rule is denoted by s : P × U → S.

Transforming a description (π, b) into a spacing rule provides us with some important properties of the MAT.
For example, we will see in Section 5 that if v(·) denotes the absorption time as a function of a spacing rule, the
MAT will be lower bounded and upper bounded respectively by the integer programming problems minm∈S v(m)
and maxm∈S v(m). There are well-known techniques to solve such problems [25–27]. In the next section, we
derive the explicit expression of v(·).

3. ABSORPTION TIME EXPRESSION

The goal of this section is to derive the explicit absorption time expression v(m) as a function of m ∈ S.

Theorem 3.1 (Absorption Time). The absorption time of the flow diagram with the spacing rule m ∈ S
is given by

v(m) =
1
2
mT Hm + c, (13)

where

Hij =
τP

Nunc

(
1 − PNhit

M

)
[
P

Nhit−|i−j|
M + P

|i−j|
M

]
, 1 ≤ i, j ≤ Nhit, (14)

c =
(

1 − Nhit

Nunc

)
·
(

1 + PM

1 − PM

)
τP

2
+

PM

1 − PM
τM + τD, (15)

with 00 � 1.

The details of the proof can be found in [15, 16]. The essential idea of the proof uses the fact that the flow
diagram has one absorption state, thereby finding the absorption time reduces to solving a system of linear
equations.

Note that when PM = 1, i.e., the acquisition receiver misses the correct cell with probability one, the
absorption time is unbounded. Therefore, we will assume that PM ∈ [0, 1) in the following sections.

4. ABSORPTION TIME PROPERTIES

The goal of this section is to prove properties of the absorption time.

Theorem 4.1 (Convexity). The function v(·) is convex on R
Nhit .

Proof. Since the coefficient τP

Nunc

(
1−P

Nhit
M

) in (14) is positive for PM ∈ [0, 1), it is sufficient to prove that the

Nhit × Nhit matrix A, in which the ijth entries are given by

Aij �
[
P

Nhit−|i−j|
M + P

|i−j|
M

]
,

is non-negative definite. When PM = 0, the matrix A is an identity matrix since 00 � 1 (see Thm. 3.1), and
thus A is non-negative definite. Therefore, we will consider only PM in the range 0 < PM < 1.

The matrix A can be generated from the kernel

K(s, t) = θ e|s−t| + e−|s−t|, −T ≤ s, t ≤ T,

where T � − (Nhit
2 − 1

4

)
lnPM and θ � PNhit

M . In particular, the ijth entries of A are given by Aij = K(ti, tj),
where

tk � −
(2k − Nhit − 1

2

)
lnPM, k = 1, 2, 3, . . . , Nhit.
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Figure 5. For n ≥ 1, the pulse train xn(t) is constructed from the vector [x1 x2 . . . xNhit ]
T .

Note that tk ∈ (−T, T ) is in a valid range. See Fig. 4 for an illustration.

Next, we show that A is non-negative definite.§ Assume to the contrary that there exists x = [x1 x2 . . . xNhit ]
T

∈ R
Nhit such that xT Ax < 0. For an integer n ≥ 1, let

pn(t) =





n2t + n if t ∈ [− 1
n , 0

]
,

−n2t + n if t ∈ (0, 1
n

]
,

0 otherwise.

Define xn(t) �
∑Nhit

i=1 xipn(t − ti) (see Fig. 5 for an illustration) and consider a sequence {yn}, where yn �∫ T

−T

∫ T

−T
xn(s)K(s, t)xn(t)dsdt. Since limn→∞ yn = xT Ax, we can select m large enough so that ym < 0.

§Our proof will show the non-negative definiteness of A from the non-negative definiteness of K(s, t). It is interesting
to further investigate the positive definiteness of our matrix A.
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It is easy to verify that T > 0 and − e−2T < θ < e−2T . Therefore, by Lemma A.1 in Appendix A, K(s, t) is
non-negative definite. Note that xm(t) ∈ L2, and, thus, ym ≥ 0. Hence, we have a contradiction. That completes
the proof.

The next theorem deals with rotational invariance and reversal invariance. Let the rotation and the reversal
of any x ∈ R

Nhit be defined respectively as follows:

rot
{

[x1 x2 . . . xNhit ]
T
}

� [x2 x3 . . . xNhit x1]
T (16)

rev
{

[x1 x2 . . . xNhit ]
T
}

� [xNhit xNhit−1 . . . x1]
T

. (17)

Notice that if m is a spacing rule, then rot {m} and rev {m} are also spacing rules. The next theorem establishes
the relationship among the absorption times corresponding to the spacing rules m, rot {m}, and rev {m}.

Theorem 4.2 (Rotational Invariance, Reversal Invariance). For every m ∈ S,

v(m) = v(rot {m}) = v(rev {m}).

Proof. For 1 ≤ i, j ≤ Nhit, let hi,j denote the ijth entry of matrix H and hi denote the ith column of H. Let
any spacing rule m be given.

To prove the rotational invariance property, we note that

mT Hm = mT




| | | |
h2 h3 . . . hNhit h1

| | | |


 rot {m}

(a)
= rotT {m}




| | | |
rot {h2} rot {h3} . . . rot {hNhit} rot {h1}

| | | |


 rot {m}

(b)
= rotT {m} H rot {m} .

The equality (a) follows from the fact that

xT y = rotT {x} rot {y} , for any x,y ∈ R
Nhit .

The equality (b) follows from the fact that¶ hi,j = hi�1,j�1 for any 1 ≤ i, j ≤ Nhit, which implies that rot {hi} =
hi�1 for any 1 ≤ i ≤ Nhit. Therefore, v(m) = v(rot {m}).

To prove the reversal invariance property, we note that

mT Hm = mT




| | | |
hNhit hNhit−1 . . . h2 h1

| | | |


 rev {m}

(a)
= revT {m}




| | | |
rev {hNhit} rev {hNhit−1} . . . rev {h2} rev {h1}

| | | |


 rev {m}

(b)
= revT {m} H rev {m} .

The equality (a) follows from the fact that

xT y = revT {x} rev {y} , for any x,y ∈ R
Nhit .

The equality (b) follows from the fact that hi,j = h(Nhit−i+1),(Nhit−j+1) for any 1 ≤ i, j ≤ Nhit, which implies
that hi = rev {hNhit−i+1} for any 1 ≤ i ≤ Nhit. Therefore, v(m) = v(rev {m}). That completes the proof.

¶The symbol � denotes the modulo Nhit addition defined by a � b � a + b − lNhit for some unique integer l such that
1 ≤ a + b − lNhit ≤ Nhit. We write a � b for a � (−b).
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5. MAT PROPERTIES

In this section, we will use the absorption time’s properties to derive important properties of the MAT.

Theorem 5.1 (Lower Bound). The MAT of any search order π satisfies

min
m∈S

v(m) ≤ E {TACQ(π)} .

Proof. Using the expression for the MAT yields

E {TACQ(π)} =
Nunc∑
b=1

f(π, b) · Pr {B = b}

=
Nunc∑
b=1

v(s(π, b)) · Pr {B = b}

≥
Nunc∑
b=1

min
(π̃,b̃)∈P×U

v(s(π̃, b̃)) · Pr {B = b}

=
Nunc∑
b=1

min
m∈S

v(m) · Pr {B = b}

= min
m∈S

v(m).

That completes the proof.

Note that the objective function v(·) is convex on R
Nhit by Thm. 4.1, and well-known techniques for solving

integer programming problems with convex objective functions are available [27].

Theorem 5.2 (Upper Bound). The MAT of any search order π satisfies

E {TACQ(π)} ≤ Tmax,

where

Tmax � v([Nunc − Nhit 0 0 . . . 0]T )

=
(Nunc − Nhit)2

Nunc
·
(

1 + PNhit
M

1 − PNhit
M

)
τP

2
+
(

1 − Nhit

Nunc

)
·
(

1 + PM

1 − PM

)
τP

2
+

PM

1 − PM
τM + τD.

Proof. For 1 ≤ i ≤ Nhit, let ei = [0 . . . 0 1 0 . . . 0]T denote a standard basis vector in R
Nhit with one and only

one non-zero element at the ith component. Let E � {(Nunc − Nhit)ei, for all 1 ≤ i ≤ Nhit} denote a subset of
S. Clearly, E forms a basis for R

Nhit .

Any spacing rule m = [m1 m2 . . . mNhit ]
T ∈ S ⊂ R

Nhit can be written as

m =
Nhit∑
i=1

λi · [(Nunc − Nhit)ei], (18)

where

λi =
mi

Nunc − Nhit
i = 1, 2, . . . , Nhit. (19)

Note that λi ≥ 0, for i = 1, 2, . . . , Nhit and
∑Nhit

i=1 λi = 1. Thus, m in (18) is written as a convex combination of
the spacing rules in E .
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Recall that v(·) is convex on R
Nhit (Thm. 4.1). Then, we have

v(m) ≤
Nhit∑
i=1

λi · v((Nunc − Nhit)ei)

(a)
=

Nhit∑
i=1

λi · v((Nunc − Nhit)e1)

= v((Nunc − Nhit)e1)
(b)
= Tmax,

where the equality (a) follows from the rotational invariance property (Thm. 4.2), and the equality (b) follows
directly from the absorption time expression (Thm. 3.1). That completes the proof.

The next theorem implies that the MAT of a receiver employing the FSSS does not depend on the location
of the first in-phase cell. Thus, the MAT evaluation can be simplified for the case of FSSS.

Theorem 5.3 (Simplification). Let s(πNJ , b) denote the spacing rule for the description (πNJ , b) corre-
sponding to the FSSS and the location 1 ≤ b ≤ Nunc of the first in-phase cell. Then

v(s(πNJ , 1)) = v(s(πNJ , 2)) = · · · = v(s(πNJ , Nunc)),

and the MAT expression for the FSSS is equal to

E
{
TACQ(πNJ)

}
= v(s(πNJ , 1)).

Proof. Let the step size NJ be given. Conditioned on B = 1, the set of in-phase cells is given by

Hhit(1) = {1, 2, . . . , Nhit}
=
{

πNJ(k1), πNJ(k2), . . . , πNJ(kNhit)
} (20)

for some unique integers 1 = k1 < k2 < · · · < kNhit . We now transform the description (πNJ , 1) into the spacing
rule m, where

mi �
{

ki+1 − ki − 1 1 ≤ i ≤ Nhit − 1
k1 + Nunc − kNhit − 1 i = Nhit.

(21)

For any j ≥ 1, let

rotj {x} � rot{rot{. . . {rot︸ ︷︷ ︸
j times

{x}} . . . }}

denote a vector obtained from the rotations of x ∈ R
Nhit for j times. Let

R �
{
m, rot {m} , rot2 {m} , . . . , rotNhit−1 {m}

}

denote a set of all rotations of the spacing rule m. By construction, s(πNJ , 1) = m ∈ R.

Let any b with 2 ≤ b ≤ Nunc be given. We want to show that s(πNJ , b) ∈ R. Consider a flow diagram with
the description (πNJ , b). Then, the set of in-phase cells is‖

Hhit(b) = Hhit(1) ⊕ (b − 1)

=
{

1 ⊕ (k1 − 1)NJ, 1 ⊕ (k2 − 1)NJ, . . . , 1 ⊕ (kNhit − 1)NJ

}
⊕ (b − 1)

=
{

b ⊕ (k1 − 1)NJ, b ⊕ (k2 − 1), . . . , b ⊕ (kNhit − 1)
}

,

(22)

‖For a set A of integers and a fixed integer n, define A⊕ n � {m ⊕ n |m ∈ A}.
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where the second equality follows from the last equality of (20) and from the definition of the FSSS in (7).

Let x � b⊕ (k1 − 1)NJ and y � b⊕ (k2 − 1)NJ denote elements of Hhit(b). Then, x and y are H1-states. For
any k1 < j < k2, we have b ⊕ (j − 1)NJ /∈ Hhit(b) since k2 < k3 < · · · < kNhit . Thus, k2 − k1 + 1 = m1 states in
{b ⊕ (j − 1)NJ | k1 < j < k2} are all of the H0-states between the two neighboring H1-states x and y.

A similar argument will show that, for 1 ≤ i ≤ Nhit, the quantity mi in (21) is the number of H0-states
between two neighboring states b ⊕ (ki − 1)NJ and b ⊕ (ki�1 − 1)NJ. Therefore,

s(πNJ , b) = rotl {m} ∈ R, for some l ≥ 1.

All spacing rules in R have the same absorption time by the rotational invariance property (Thm. 4.2).
Therefore, v(s(πNJ , 1)) = v(s(πNJ , 2)) = · · · = v(s(πNJ , Nunc)), which implies that the MAT expression for the
FSSS is E

{
TACQ(πNJ)

}
= v(s(πNJ , 1)). That completes the proof.

6. CONCLUSION

This paper investigates the properties of acquisition receivers that employ serial-search strategies. We begin
by noting that the mean acquisition time (MAT) is a convex combination of the absorption times. We point out
the difficulty in establishing the important properties of the MAT directly from the absorption time expression,
obtained by a conventional method. This difficulty is then alleviated by transforming the absorption time into
the spacing rule domain. The transformation offers insights into the properties of the absorption time and the
MAT.

We first derive an explicit expression for the absorption time in the spacing rule domain. We then show that
the absorption time is convex in R

Nhit , rotation invariant, and reversal invariant. We show that the minimum
MAT over all possible search orders is lower bounded by the solution to an integer programming problem whose
fluid approximation (or relaxation) has a convex objective function. Thus, well-known techniques in convex
optimization can be used to find the explicit solution algorithmically. We also derive the upper bound on the
MAT over all possible search orders. The upper bound expression is explicit and depends on the details of
the signal detection procedure. We further show that the MAT of the fixed-step serial search (FSSS) does not
depend on the location of the first in-phase cell. Thus, the evaluation of the MAT for the FSSS can be simplified
significantly.

Throughout the paper, we deliberately represent the details, such as the fading statistic, the receiver’s archi-
tecture, and the design choice of decision variables, by a few parameters PD, PM, τD, τM, and τP. Therefore, the
results in this paper can be applied to the design and analysis of fast acquisition systems in various wideband
scenarios including several fading conditions, hardware implementations, and operating environments.

APPENDIX A. NON-NEGATIVE DEFINITENESS OF THE HESSIAN MATRIX H

Lemma A.1 (Non-Negative Definite Kernel). Let T > 0 and − e−2T < θ < e−2T be given. Define a kernel

K(s, t) � θ e|s−t| + e−|s−t|, (23)

for −T ≤ s, t ≤ T . Then, K(s, t) is non-negative definite on the space [−T, T ] × [−T, T ]. That is, for any
function f(t) ∈ L2[−T, T ],

∫ T

−T

∫ T

−T
f(s)K(s, t)f(t)dsdt ≥ 0.

Proof. For any s, t ∈ [−T, T ], K(s, t) = K(t, s) and |K(s, t)| ≤ 2. Thus, K(s, t) is symmetric and square-
integrable (i.e.,

∫ T

−T

∫ T

−T
|K(s, t)|2dsdt < ∞). By [28, Thm 7.71, p. 127], K(s, t) is non-negative definite on

[−T, T ]× [−T, T ] iff all eigenvalues of K(s, t) are positive. We will derive a complete set of eigenvalues of K(s, t)
and show that they are positive.

The eigenvalues λi satisfy the following integral equation

λiϕi(s) =
∫ T

−T

K(s, t)ϕi(t)dt − T ≤ s ≤ T, (24)
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where ϕi(t) are orthonormal eigenfunctions corresponding to the eigenvalues λi.∗∗ It can be shown that the
eigenfunction satisfies the following second-order differential equation:

λϕ′′(s) =
[
λ − 2(1 − θ)

]
ϕ(s). (25)

When λ is non-zero, let α � [λ− 2(1− θ)]/λ denote the normalized coefficient of ϕ(s) in (25). We consider four
separate cases.

1. The eigenvalue is zero: λ = 0.
Equation (25) implies that ϕ(s) = 0, for s ∈ [−T, T ], which is not an eigenfunction. Therefore, this case is
impossible.

2. The eigenvalue is non-zero and α > 0. In this case, solutions to the differential equation (25) are of the
form

ϕ(s) = A e
√

αs +B e−
√

αs . (26)

Substituting (26) into the integral equation in (24), using the bounds on T and θ, and solving for A and
B, we can show after some algebra that A = B = 0. This case then implies that ϕ(s) = 0, for s ∈ [−T, T ],
which is an invalid eigenfunction. Thus, there is no eigenfunction of the form in (26).

3. The eigenvalue is non-zero and α = 0.
Thus, solutions to (25) are of the form

ϕ(s) = As + B. (27)

Substituting (27) into the integral equation in (24), using the bounds on T and θ, and solving for A and
B, we can show after some algebra that A = B = 0, which implies that no eigenfunction is of the form in
(27).

4. The eigenvalue is non-zero and α < 0.
Thus, solutions to (25) are of the form

ϕ(s) = A cos(
√

|α|s) + B sin(
√

|α|s). (28)

Substituting (28) into the integral equation in (24) and solving for A and B, we can show after some algebra
that AB = 0 and that the eigenvalues are given by

λi =
2(1 − θ)
1 + µ2

i

, i = 1, 2, 3, . . . . (29)

Here, µi are positive solutions to the transcendental equation
(
tan µT + κµ

)(
tan µT − κ

µ

)
= 0,

where κ �
(

e−T −θ eT

e−T +θ eT

)
. Clearly, the eigenvalues in (29) are positive.

Because all eigenvalues of K(s, t) are strictly positive, K(s, t) is a non-negative definite kernel. That completes
the proof.
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∗∗The existence of countably many eigenvalues of K(s, t) follows from the theorem of Hilbert and Schmidt [29, p. 243].
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