

Foundations of evolutionary computation

David B. Fogel∗
Natural Selection, Inc., 3333 N. Torrey Pines Ct., Suite 200, La Jolla, CA, USA 92037

ABSTRACT

Evolutionary computation is a rapidly expanding field of research with a long history. Much of that history
remains unknown to most practitioners and researchers. This paper offers a review of selected foundational
efforts in evolutionary computation. A brief initial overview of the essential components of evolutionary
algorithms is presented, followed by a review of early research in artificial life, evolving programs, and
evolvable hardware. Comments on theoretical developments and future developments conclude the review.

Keywords: evolutionary computation, artificial life, evolvable programs, evolvable hardware

1. INTRODUCTION

The essential aspects of an evolutionary algorithm are shown in Figure 1. A population of candidate
solutions to a problem is scored with respect to a so-called fitness criterion. These solutions serve as
parents for offspring. These offspring are created via random variation of the parents in the form of
mutations and/or recombination, or possibly other operations. The offspring are scored and the solutions
compete for survival and the right to become parents of the next generation. This basic protocol or variants
of it appear in virtually all evolutionary algorithms, with the exception of artificial life studies that seek to
determine emergent properties of simulations, and also some extended variations of evolutionary
computing such as particle swarm and ant colony methods. In the past 20 years, there have been numerous
successful applications of this general evolutionary approach, with various extensions, in the areas of
medicine, bioinformatics, military planning, scheduling, forecasting, and other areas. It is reasonable to
believe that over 3000 papers are published annually in evolutionary computing around the world.

Select an
Initial Population

Randomly Modify
 Individuals

Evaluate of the Worth
of Each Individual

Select a Next
Generation Population

Figure 1. The basic flow of an evolutionary algorithm.

Evolutionary computation has a long history, which extends over 55 years. Some of the earliest progenitors
of that history can be found even 20 years still earlier. For example, in 1932 Cannon1 noted that evolution

∗ dfogel@natural-selection.com; phone 1 858 455-6449; fax 1 858 455-1560; www.natural-selection.com

Keynote Paper

Modeling and Simulation for Military Applications, edited by Kevin Schum, Alex F. Sisti
Proc. of SPIE Vol. 6228, 622801, (2006) · 0277-786X/06/$15 · doi: 10.1117/12.669679

Proc. of SPIE Vol. 6228 622801-1

was a learning process and made a direct comparison to individual learning. In addition, Turing2 offered
that there is an “obvious connection between [machine learning] and evolution.” By the mid-1950s, the
idea of simulating evolution on a computer had already taken root. One of the first theoretical works on
simulated evolution involved a robot learning to move in an arena. In this work, Friedman3,4 also remarked
that mutation and selection would be able to design thinking machines, including chess-playing machines.
The concept that evolution and learning are intimately connected was also offered by Campbell5,6,7 in the
late 1950s and also 1960.

Unfortunately, these historical contributions, and likely the majority of other early contributions, are
virtually unknown in the evolutionary computation community. This unawareness is a result of a lack of
rigor and a reflection of the immaturity of the field, as compared with say, physics, mathematics, or
chemistry. Many innovative approaches to evolutionary computing were undertaken in the earliest days of
computing. With current computational capabilities, we now have the computing power to explore these
seminal ideas further. If this review paper encourages such efforts, it will have served its purpose. This
paper focuses on historical contributions in artificial life, modeling genetic systems, evolving programs,
and evolving hardware which may not be as well known as others in popular literature (e.g., those featured
routinely in trade magazines). It also offers remarks on the future of evolutionary algorithms in light of
current knowledge. Not all early and unrecognized efforts are given due attention owing to space
limitations. Interested readers may find these covered in Fogel19.

2. HISTORICAL FOUNDATIONS

1.1 Artificial Life

As noted in Fogel8,13, perhaps the earliest published record of any work in evolutionary computation is
Barricelli9. Nils Aall Barricelli worked on John von Neumann’s high-speed computer at the Institute for
Advanced Study in Princeton, New Jersey, in 1953. Barricelli’s experiments were essentially trials in the
area of artificial life, in which numbers were placed in a grid and moved based on local interaction rules.
His original research was published in Italian, but was republished in 1957 in English10. Two additional
publications in 1962 and 1963 extended his work11, 12.

Barricelli’s essential experiments worked as follows. Numbers were entered into a grid of predetermined
size. Positive numbers shifted to the right, while negative numbers shifted to the left. When collisions
occurred between two more numbers that entered the same cell in the grid, other rules were applied to
determine how to alter the numbers. For example, suppose that a one-dimensional grid had N = 20 cells and
numbers were distributed in those cells at the initial generation g = 0. For g = 1, the numbers would shift to
different cells based on the arrangement of numbers at g = 0, and then progress further or “migrate” based
on their then-current positions.

To explain Barricelli’s specific migration rules, say xi,g is the numeric entry at the gth generation in cell i.
Barricelli [2] used rules such as:

(1) A number shifts n cells to the right if it is positive, or |n| cells to the left if it is negative, unless this
results in a “collision” with another number (in which two numbers arrive at the same cell location).

(2) The same number xi,g = n may reproduce m cells to the right (or left) if xi+n,g = m, again with the
exception of a collision.

(3) Reproduction may occur more than once if xi+m,g = r (where r ≠ 0, which designated an empty square),
then xi+r,g+1 = n, again with the exception of a collision.

(4) If two numeric elements collide in a cell, then if they are equal only one copy of the number is placed in
the cell. If the numbers are not equal, other rules are applied to determine which number to place in the cell
or other cells.

Proc. of SPIE Vol. 6228 622801-2

I'a
 U

IIj
 —

k.

. U

I
'a

 'aA
 'a

('a

 —

I'a

('a

U

I'a

U
I

—
 'a

 U
I
. —

'a

 —
 'a

 U
,

La

'a
 U

I
'a

 -
U

I
-.

'a

 —
 '

a
U

I
'a

 —

'a
 —

La

U

I
'a

'a

 —

U
I

-
'a

 -
U

I
'a

('a
 U

IL
a

—

'a
 —

'a
 U

I(
'a

.

'a
—

I 'a
U

lL
a

—

..
('a

-

'a
 —

La

U

I
'a

 —

..

I 'a

'a
('a

('
a

La

'a

U
I

La

—

'a

La

-.

'a
U

I(
 'a

(-

.b
 .

'a

'a

'

'a
—

'a
 U

I
'a

La

U
I

La

—

La

'a

Li
 —

.
' 'a

IA

U

I
.

Figure 2, taken from Barricelli10, shows an example of numbers propagating in time through a series of 20-
cell grids. The numbers involved are −3, 1, and 5, and also 0 representing an empty square. Starting from
the arrangement at g = 0 at the top of the grid (usually found by using a set of playing cards), by the fourth
generation, the pattern (5, −3, 1, −3, 0, −3, 1) appears and persists in every other generation. This example
is a “flat” grid, but Barricelli10 noted experiments with 512 cells in a tubular design (connecting the left and
right edges).

Figure 2. A series of generations of numbers moving in a grid following the rules of Barricelli10. The first generation is
shown in the top row of cells. Subsequent generations are shown as successive descending rows of cells. By the fourth
generation, the pattern (5, −3, 1, −3, 0, −3, 1) appears and persists in each subsequent generation. Note that a number
with an underscore has a negative value. The figure is adapted from Barricelli10.

Barricelli made several observations about the patterns that emerged from such simple rules, which he
termed “organisms.” Organisms were defined to be independent if they could reproduce without requiring
other organisms of a different pattern, which he described using the term “another species.” Conversely, if
an organism was unable to reproduce without a continuous supply of other numbers then it was dependent,
and described as a “parasite.” Barricelli noted patterns of recombination, including a multiple-point
operation in which two patterns would collide and the result would be a new self-sustaining pattern with
numbers chosen from each of the “parents.” A two-dimensional version of the experiment was also
performed, with obvious similarities to the work of Conway’s Game of Life, popularized much later14.
Overall, Barricelli’s search for emergent patterns is reminiscent of the search for emergent properties in
complex adaptive systems that pervaded artificial life research in the late 1980s and early 1990s15,16.

In the late 1960s, Michael Conrad offered a seminal contribution to artificial life17, the journal version of
which was published by Conrad and Pattee18. A population of cell-like individual organisms was subjected
to a strict materials conservation law that induced competition for survival. The organisms were capable of
mutual cooperation as well as executing biological strategies that included genetic recombination and the
modification of the expression of their genome. No fitness criteria were introduced explicitly as part of the
program. Instead, the simulation was viewed as an ecosystem in which genetic, individual, and population
interactions would occur and behavior patterns would emerge.

The organisms were composed of what were essentially genetic subroutines. Individual phenotypes were
determined by the manner in which these routines were used by the organisms. The fixed set of routines
that they provided was somewhat limiting, but Conrad and Pattee18 accepted this limitation so long as the
“process of modifying these featured produces a system whose behavior converges to that of a natural
ecosystem.” In particular, Conrad and Pattee were concerned that (1) behavior that is characteristic of
ecological succession processes should potentially emerge, (2) the processes of evolutionary search must
agree with biological fact (i.e., nonbiological operators that would make search more “efficient” were
precluded), and (3) the simulation should be as simple as possible to allow for studying both the
fundamental features of ecosystems as well as the minimum necessary conditions for natural evolution.

Proc. of SPIE Vol. 6228 622801-3

Organism /
'lace

Chips = Material

The events in the evolution program took place in an environment termed the world (Figure 3). The world
was a one-dimensional string of places. The first element in this array was linked to the last, forming a
loop, to avoid end effects. Each place in the world was characterized by a state (A or B) and a certain
number of material parts called chips. The organisms determined the control of the flow of the chips in the
world. Chips were essential to persistence (i.e., survival) and reproduction, but no explicit behavioral
strategies were introduced to acquire these chips. Any such behaviors emerged from the initial conditions
of the simulation as the conservation of matter (a fixed number of total chips) induced a competition for
chips among the organisms. Figure 4 shows a flowchart of the overall process.

Figure 3. A graphical depiction of Conrad’s Evolve “world.” Organisms resided in places in the world, which was a
ring of places. Chips were located in places and served as the material that organisms required.

Each organism in the simulation was associated with a place in the world. Organisms operated over a range
of contiguous places (territory). Events occurred in discrete periods with the lifespan of an organism
extending over a number of these periods. Organisms interacted in a two-phase system: In the first phase
they interacted with the environment and the other organisms in their local areas, while in the second phase
chips were collected for the various behaviors, reproduction occurred (if applicable), and chips from “dead”
organisms were deutilized (i.e., returned to a “matter pool”). The effects of birth and decay determined the
composition of the next iteration, and the process was then repeated.

As indicated above, the organisms were modeled with an explicit genotype-phenotype. An organism’s
genome was mapped to a phenotype according to a coding function. Sixteen possible pairs of genomic
symbols were associated with six types of phenome symbols. The organism’s immediate behavior
depended on an “internal state” and an “input state.” The sequence of internal states, combined with the
input states and the other organisms in the population, determined the chip-collecting behaviors of the
organism. Organisms could allocate chips for self-repair, and reproduction was allowed when a sufficient
number of chips had been stored. The genetic program of the organisms was subjected to both point and
size mutations, as well as a recombination operator that consisted of breaking and splicing genomes at
random places. The location of daughter cells created by reproduction was restricted, but was also under
genetic control.

The population size ranged from 200 to 400 organisms, depending on the number of chips made available
at the start of the simulation. The distribution of chips was affected only by the organisms’ behavior and
therefore the fitness criteria varied during the simulation as organisms interacted (noise was also added to
the environment in some experiments). Attention was focused on features such as chip utilization (ratio of
chips used to chips not used), matching ratio (successful matches to those attempted), and changes in size
of population (survival curve). A sample result and the associate figure caption from Conrad’s primary
work is shown in Figure 5.

Some general observations of these experiments included: (1) the matching ratio of phenotypic characters
to environmental conditions increased when the environment contained no noise, (2) adding noise led to a
diversity of phenotypic types with no indication of impending homogeneity, (3) in general, the probability
of recombination tended to decrease, (4) utilization of the environment tended to increase, and (5) the

Proc. of SPIE Vol. 6228 622801-4

P1 P2 P3 P4 P5 P6 P7 P8 P9 PlO P11 P12

IPIPUTSTAIE A A fi A B B B A B A A A
TNURNALSThIt A CR D F E ABAA E D

F,o. 2. Represcntative organism. The organism is atiached ai place P2, The firsi internal
state is A sad the first Input state is A. The organism records this fact, and wlI collect

cuin number of chips during the second pass. The second internal slate is C. The or-
gsniM will ltst look for * conjtete at position P3. The third internal slate is B and the
input stale is A- na do not match and 'he orIMiisut goes to its next internal flaie. This
is 0. and the otnjaM a alloate a chip to repair processes, assuming that it colkcis a
chip. 'The fifth islenial slate is F, and the organism will latar look for a symbiont at place
Pb. The next internal stats is Eand the orgsnistn goes into aparameiric mode. The seventh
internal state is one of the psirA or B. Thus the organism will always match place PS. The
internal state which foUovQa is ao one of a pair, but in this case both members of the pair
aft As. This is v.stdul and, in fact, the organism — tot match place P9. The organism
iw toes into an E slate sad jnmps out of the parametric mode. Thus the next stale is 0
— the ocg.aisin Isanitled to another repair chip In general if the second alternative in
'he paxametric mode is anon-matching ye symbol it cannot be mod. Also it it wasteful
if the E symbol signallin the pasamelric mode occtus in an odd position, since he im-
mediately following symbol will not be used.

predominant organisms carried phenome sequences that were not executed and therefore of no selective
value. These initial simulations were extended over many years in Conrad20, Conrad and Strizich21, Rizki
and Conrad22,23, Conrad and Rizki24, and O’Callaghan and Conrad25.

Figure 4. The flowchart for Conrad’s Evolve program.

Figure 5. A representative organism’s behavior from Conrad’s Evolve model and associated description of the
program’s activity in the caption.

Conrad’s investigations were clear precursors to the later work of Ray26 with Tierra, in which assembly
language programs competed for CPU cycles. In each case, no explicit fitness criteria were applied to direct
the course of evolution.

Proc. of SPIE Vol. 6228 622801-5

Combination

[....wxyz....:I

Recombination

[.... w1xj..

ABCDEFGHIJ
Inversion

A BH G F E D C•I J

Inverted segment

1.2. Modeling Genetic Systems

The interest in modeling genetic systems to explore and better understand biology dates back at least to the
work of Fraser27 in 1957, who conducted simulations involving diploid organisms represented by binary
strings of a given length (n bits). Each bit represented an allele (dominant or recessive) and the phenotype
of each organism was determined by its genetic composition. Reproduction was accomplished using an n-
point crossover operator in which each position along an organism’s genetic string was assigned a
probability of breaking for recombination. Linkage groups could form between genes. This was
accomplished by varying the probability of crossover occurring at each locus along either string.

Fraser’s general procedure used a population of P parents that generated P′ offspring via recombination.
Selection then eliminated all but P of the offspring (and all of the parents were also eliminated). Readers
who are well versed in evolution strategies will note that this anticipated the (µ,λ) selection method.
Selection could be applied toward extreme values of a phenotype (the equivalent of function maximization
or minimization) or the mean values (stabilizing selection against extremes). The possibility for varying the
number of progeny per parent was also introduced.

Fraser and colleagues published numerous papers in this line of research. These works included
Fraser28,29,30,31,32,33, Barker34,35, Fraser and Hansche36, Fraser et al.37, Fraser and Burnell38,39. Fraser and
Burnell40, Computer Models in Genetics, was the second book in the history of evolutionary computation.
Given the close overlap in subsequent work in genetic algorithms, as say offered in Holland41, including
epistasis, linkage groups, recombination, binary strings, diploid representations, and so forth, it is perhaps
surprising and certainly unfortunate that these earlier works were mostly ignored outside the field of
genetics for over two decades. By the time of Fraser’s later contributions, say Fraser42, the models also
incorporated inversion to build arbitrary linkages between alternative genes and were described in clear
terms as “purposive” and “learning” (Figure 6). Thus Fraser’s model was essentially equivalent to the
canonical genetic algorithm popularized in Holland41.

Figure 6. Taken from Fraser42, the top portion depicts a 2-point crossover operation, and the bottom portion depicts
inversion on labels of genes in a string.

Whereas Fraser did not offer mathematical theory about his algorithms, Bremermann studied a similar
model and did make theoretical contributions. In 1958, Bremermann43 offered an idealized model of

Proc. of SPIE Vol. 6228 622801-6

x' xU)1 2 ••
x2 , xI2)

,

x1 x3 x3
1 2 ' ' n—i.

evolution in which heritable genes were encoded in binary strings that were processed by reproduction
(sexual or asexual), selection, and mutation. Bremermann showed that for the onemax problem, in which
fitness is determined by summing the number of 1s that occur in a binary string, the most favorable
mutation probability for improvement without degeneration when the number of incorrect bits is small with
respect to the total number of bits, n, is approximately equal to 1/n. This result was rediscovered over three
decades later in Muehlenbein44. Bremermann also derived the generalized optimum probability of mutation
for this problem as 1 – (m/n)1/(n–m), where m is the number of bits that are correct. Bremermann et al.45
extended the result to hold for any fitness function that is a function of n binary variables and is a monotone
function of the Hamming distance of its argument vector from the solution vector.

Bremermann and colleagues extended this original model to become a generalized function optimization
method in Bremermann46,49,50,51,52, Bremermann and Rogson47, and Bremermann et al.45,48. The method was
applied in numerous experiments to linear and nonlinear optimization, including problems of up to 30
dimensions. Bremermann considered various recombination operators, including the potential for using
more than two parents (Figure 7).

Figure 7. Bremermann’s studies of recombination included the potential for creating an offspring from two or more (in
this example, three) parents (from Bremermann et al.45).

1.3. Evolving Programs

Conrad’s artificial ecosystem experiments described earlier involved organisms that were programs, which
reacted to inputs, followed a sequence of steps, and generated output; however, two other earlier efforts
were made to evolve programs to execute specific tasks.

In 1958 and 1959, Friedberg53 and Friedberg et al.54 evolved machine language programs (binary language)
to perform simple operations such as moving data from one location to another or performing the sum of
numbers in two data locations. The speed of the available computers at the time demanded several
procedural shortcuts in order to test the devised methods. There was a hope that structurally similar
programs could be grouped together in classes. This concept was another forerunner of what was described
as intrinsic parallelism in Holland41. Specifically, a class was defined to consist of all programs having a
certain instruction at a certain location. A learning procedure was intended to compare the performance of
two nonoverlapping classes of programs, essentially evaluating alternative instructions that might occur at a
given location. This concept is also similar to what was later described as schemata in Holland41.

A credit assignment method was invented to partition the influence of individual instructions, which
recorded the number of overall successes and failures for each instruction. The hope was that by combining
programs with more “good” instructions this would lead to improved programs overall. Friedberg et al.54
noted that the evolved programs compared favorably to completely random generate-and-test methods, but
complex problems that were broken in parts were not always solved to completion. Misky55 offered an
unfavorable and apparently erroneous criticism of Friedberg’s work, saying that “The machine did learn to
solve some extremely simple problems. But it took on the order of 1,000 times longer than pure chance
would expect.” There appears to be no basis for this description. Unfortunately, Minksy’s criticism was
well publicized and left a lasting impression of this work.

Subsequent to Friedberg, Fogel56 offered the idea of simulating evolution for creating artificial intelligence,
following earlier development of this concept in 1960 while serving at the National Science Foundation.

Proc. of SPIE Vol. 6228 622801-7

0 3/2
1,3/2
1,2/0
1,1/0
1,0/2

0,2/2
0,1/2

0.0/2
0.1/2

0,3/2
1, 1/2

0,1/3
1,2/1

1.1/0

0,2/2
1,
1,0/3

Fogel suggested that prediction is a keystone of intellect and his research focused therefore on predictive
models, taken in the form of finite state machines (Figure 8). A finite state machine is a program that starts
in a state and receives an input symbol and generates output and transitions to other states based on a
stream of such inputs.

Figure 8. A finite state machine from Fogel et al.57. The three-state machine is presumed to start in state A. The
machine is designed to operate in a four-symbol environment and can handle two inputs simultaneously in the form of
an ordered pair of symbols [e.g., (0,1)]. This could represent, for example, moves in a game by two players. The
symbols to the right of the virgules indicate the output associated with possible inputs.

A population of random finite state machines was exposed to an environment as a string symbols (e.g.,
101110011101 or 31022210), with each machine being scored in terms of how well it predicted the
available data. The better machines were retained as parents for generating offspring via mutation of the
number of nodes in the machine, the input-output or input-transition relationships, or the start state. The
offspring were then compared with the parents in terms of performance and the process of variation and
selection was continued until a prediction of the next symbol was required. At that point the best machine
was used to make the prediction and the new datum was added to the observed environment, with the
process iterating.

This general procedure, which included prescriptions for using probabilistic selection and multiparent
mating, was expanded and applied to problems in prediction, system identification, control, and pattern
recognition in a series of studies (Fogel58, Fogel et al.59,60,61, Fogel and Burgin62, Burgin63,64, Lutter and
Huntsinger65, Cornett66, Dearholt67, Atmar68, and many others).

The publication of Fogel et al.69 was the first book in the field of evolutionary computation. The
evolutionary approach to artificial intelligence received significant attention from the artificial intelligence
community, as well as researchers in the former Soviet Union70,71,72. Notable resistance was offered from
those following more traditional avenues of symbolic processing and heuristics73.

1.4. Evolvable Hardware

Recent interest in evolvable hardware has focused on evolving electronic circuits (which was suggested in
Atmar68; however, perhaps the earliest effort in evolvable hardware evolved physical devices such as bent
pipes, airfoils, and flashing nozzles. This research was performed by Ingo Rechenberg, Hans-Paul
Schwefel, and Peter Bienert in 1964 and subsequently at the Technical University of Berlin, Germany.
Instead of using conventional gradient methods to optimize these devices for various tasks, e.g., to design

Proc. of SPIE Vol. 6228 622801-8

0

lIIlII2 rrrrrrn
I

I III

rnrrjiiHI
LLILLLI I

II

LLLWII
TrnTITIk+k

8 rr1-rr1Tfl rnrrrrr

LL
ii
12

13

;.LLLJ_LLI I I[I
15iiI I Ii H rirrr

I I
16

H Iu-L
II LLLUJLU

18 vrrrrrrFn
I LLLUJ...LL.J

19 I IfLI1Tr

21

I I[I
23+ II nnirri
24 IirrirItI
25 iTmrrrn

26 nTrrmI!II
WJJL11J

wJJ-uJ-jJ

31

32 I1I1 II
Tfl1TH I II

IIIkIJILU

II TIIII II
rrrrn I II

36111i IIIiIJU1Ui
m17fl I II

38 IIP H =
39 *IIII

I
41

I rrrTrfln

42 $I
43 4J

ILJk[1J1 WL
45

I I I I t111IIII1

Bild9. Entwicklung einerZweiphasen-Uberschalldüse von derAnfangsform OzurOptimalform 45

an airfoil that minimizes drag, they used a random variation and selection method that employed throwing
dice to make physical alterations to devices. This was published first in 1965 by Rechenberg74. In 1966,
Schwefel75 used this “evolution strategy” to design a nozzle for convergent-divergent flow of hot water that
would offer maximum efficiency. He built a nozzle out of brass rings of varying diameter and the
concatenated them into a single device. By throwing dice, he changed both the number of rings in the
nozzle as well as the diameter. Starting with a conventional design shown in Figure 9, through 45 iterations
of variation and selection, the final design shown in the figure was obtained. These efforts led to many
other developments in evolution strategies for numerical optimization, including the use of a population of
solutions, the common (µ+λ) and (µ,λ) forms of selection, self-adaptation, and various forms of
recombination.

Figure 9. A series of 45 iterations of improvements from Hans-Paul Schwefel’s experiments evolving a flashing nozzle.
Unlike the initial standard design, the final design did not use a single pinch point.

3. FUTURE DEVELOPMENTS

The field of study of evolutionary algorithms has now reached a critical mass. Only 20 years ago, it was
easy to know virtually everyone researching evolutionary algorithms (then described as evolution
strategies, evolutionary programming, or genetic algorithms, and then later genetic programming)

Proc. of SPIE Vol. 6228 622801-9

personally. Today, this is impossible. Within the last 10 years, there has been sufficient mixing of research
ideas and mathematical development to show general convergence properties of evolutionary
algorithms76,77, specific convergence properties on certain funtions78, as well as rigorous review of earlier
theoretical work that has been proven to be incorrect or unfounded (see Wolpert and Macready79, Macready
and Wolpert80, Fogel and Ghozeil81,82, and others; for example, claims of optimality of binary
representation, single-point crossover, and the k-armed bandit analysis in Holland41). In light of these and
other mathematical analyses, it has become clear that there is no longer a benefit to partitioning
evolutionary computation into separate concepts of say genetic algorithms as opposed to evolution
strategies. There is no theory that holds for genetic algorithms that would not hold for evolution strategies
as they are constituted currently. Thus, the greatest advance of the field of evolutionary computation will
come from ignoring such artificial divisions and recognizing the potential for population-based variation
and selection broadly.

Evolutionary algorithms are inherently parallel. Yet, to date, a relative minority of applications has taken
advantage of this fact. It is not difficult, however, to construct clusters of personal computers and create the
equivalent of supercomputing power at relatively low cost. As distributed processing becomes more
ubiquitous, so will applications of evolutionary computing.

Evolution is the most ancient primal form of learning. In contrast, research in artificial intelligence has
typically passed over investigations into the causative factors of intelligence in order to more rapidly obtain
the immediate consequence of intelligence. Such is the case in numerous examples of expert and
knowledge-based systems. While these efforts have had success, such as Deep Blue’s victory over Garry
Kasparov, world chess champion, in May of 1997, they do not advance our understanding of intelligence.
They solve problems, but they do not solve the problem of how to solve problems. Evolution provides the
solution to the problem of how to solve problems. Darwinian evolution accounts for the behavior of
naturally occurring intelligent entities and can be used to guide the creation of artificial entities that are
capable of intelligent behavior, going beyond what humans already know, and in the future, will know.

ACKNOWLEDGEMENTS

This review paper contains materials that have appeared in IEEE publications8,13,19. As appropriate, these
materials are reused or revised and reprinted here in accordance with IEEE copyrights. The author thanks
the conference organizers for inviting this review article.

REFERENCES

1. W.D. Cannon, The Wisdom of the Body, W.W. Norton, New York, 1932.
2. A.M. Turing, “Computing machinery and intelligence,” Mind, Vol. 59, pp. 433-460, 1950.
3. G.J. Friedman, “Selective Feedback Computers for Engineering Synthesis and Nervous System
Analogy,” Masters Thesis, UCLA, 1956.
4. G.J. Friedman, “Digital simulation of an evolutionary process,” General Systems: Yearbook of the
Society for General Systems Research, Vol. 4, pp. 171-184, 1959.
5. D.T. Campbell, “Adaptive behavior from random response,” Behavioral Science, Vol. 1, pp. 105-110,
1956.
6. D.T. Campbell, “Perception as substitute trial and error,” Psychol. Rev., Vol. 63, pp. 330-342, 1956.
7. D.T. Campbell, “Blind variation and selective survival as a general strategy in knowledge-processes,” In
Self-Organizing Systems, M.C. Yovits, S. Cameron (eds.), Pergamon Press, NY, pp. 205-231, 1960.
8. D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd ed.,
IEEE Press, NY, 2006.
9. N.A. Barricelli, “Esempi numerici di processi di evoluzione,” Methodos, pp. 45-68, 1954.
10. N.A. Barricelli, “Symbiogenetic evolution processes realized by artificial methods,” Methodos, Vol.
9:35-36, pp. 143-182, 1957.
11. N.A. Barricelli, “Numerical testing of evolution theories: I. Theoretical introduction and basic tests,”
Acta Biotheoretica, Vol. 16:1-2, pp. 69-98, 1962.

Proc. of SPIE Vol. 6228 622801-10

12. N.A. Barricelli, “Numerical testing of evolution theories: II. Preliminary tests of performance
symbiogenesis and terrestrial life,” Acta Biotheoretica, Vol. 16:1-2, pp. 69-98, 1962.
13. D.B. Fogel, “Nils Barricelli – Artificial life, coevolution, self-adaptation,” IEEE Computational
Intelligence Magazine, pp. 41-45, February, 2006.
14. A.K. Dewdney, “Computer recreations: The game of life acquires some successors in three
dimensions,” Scientific American, Vol. 256:2, pp. 16-24, 1987.
15. C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen (eds.) Artificial Life II, Santa Fe Institute,
Addison-Wesley, Reading, MA, 1990.
16. C.G. Langton, Artificial Life: An Overview, MIT Press, Cambridge, MA, 1997.
17. M. Conrad, “Computer experiments on the evolution of coadaptation in a primitive ecosystem,” Ph.D.
Diss., Biophysics Program, Stanford, CA, 1969.
18. M. Conrad and H.H. Pattee, “Evolution experiments with an artificial ecosystem,” J. Theoret. Biol.,
Vol. 28, pp. 393-409, 1970.
19. D.B. Fogel (ed.) Evolutionary Computation: The Fossil Record, IEEE Press, NY, 1998.
20. M. Conrad, “Algorithmic specification as a technique for computing with informal biological models,”
BioSystems, Vol. 13, pp. 303-320, 1981.
21. M. Conrad and M. Strizich, “Evolve II: A computer model of an evolving ecosystem,” BioSystems, Vol.
17, pp. 245-258, 1985.
22. M.M. Rizki and M. Conrad, “Evolve III: A discrete events model of an evolutionary ecosystem,”
BioSystems, Vol. 18, pp. 121-133, 1985.
23. M.M. Rizki and M. Conrad, “Computing the theory of evolution,” Physica 22D, pp. 83-89, 1986.
24. M. Conrad and M.M. Rizki, “The artificial worlds approach to emergent evolution,” BioSystems, Vol.
23, pp. 247-260, 1989.
25. J. O’Callaghan and M. Conrad, “Symbiotic interactions in the EVOLVE III ecosystem model,”
BioSystems, Vol. 26, pp. 199-209, 1992.
26. T. Ray, “An approach to the synthesis of life,” Artificial Life II, C.G. Langton, C. Taylor, J.D. Farmer,
and S. Rasmussen (eds.), Addison-Wesley, Reading, MA, pp. 371-408, 1992.
27. A.S. Fraser, “Simulation of genetic systems by automatic digital computers. I. Introduction,” Australian
J. Biological Sciences, Vol. 10, pp. 484-491, 1957.
28. A.S. Fraser, “Simulation of genetic systems by automatic digital computers. II. Effects of linkage or
rates of advance under selection,” Australian J.. Biological Sciences, Vol. 10, pp. 492-499, 1957.
29. A.S. Fraser, “Monte carlo analyses of genetic models,” Nature, Vol. 181, pp. 208-209, 1958.
30. A.S. Fraser, “Simulation of genetic systems by automatic digital computers, 5-linkage, dominance and
epistasis,” Biometrical Genetics, O. Kempthorne (ed.), Pergamon Press, NY, pp. 70-83, 1960.
31. A.S. Fraser, “Simulation of genetic systems by automatic digital computers, VI. Epistasis,” Australian
J. Biological Sciences, Vol. 13:2, pp. 150-162, 1960.
32. A.S. Fraser, “Simulation of genetic systems by automatic digital computers. VII. Effects of
reproductive rate and intensity of selection on genetic structure,” Australian J. Biological Sciences, Vol. 13,
pp. 344-350, 1960.
33. A.S. Fraser, “Simulation of genetic systems,” J. Theoret. Biol., Vol. 2, pp. 329-346, 1962.
34. J.S.F. Barker, “Simulation of genetic systems by automatic digital computers. III. Selection between
alleles at an autosomal locus,” Australian J. Biological Science, Vol. 11, pp. 603-612, 1958.
35. J.S.F. Barker, “Simulation of genetic systems by automatic digital computers. IV. Selection between
alleles at a sex-linked locus,” Australian J. Biological Science, Vol. 11, pp. 613-625, 1958.
36. A.S. Fraser and P.E. Hansche, “Simulation of genetic system. Major and minor loci,” Proc. 11th Intern.
Cong. On Genetics, Vol. 3, S.J. Geerts (ed.), Pergamon Press, Oxford, pp. 507-516, 1965.
37. A.S. Fraser, D. Burnell, and D. Miller, “Simulation of genetic systems. X. Inversion polymorphism,” J.
Theoret. Biol., Vol. 13, pp. 1-14, 1966.
38. A.S. Fraser and D. Burnell, “Simulation of genetic systems. XI. Inversion polymorphism,” Am. J.
Human Genetics, Vol. 19:3, pp. 270-287, 1967.
39. A.S. Fraser and D. Burnell, “Simulation of genetic systems. XII. Models of inversion polymorphism,”
Genetics, Vol. 57, pp. 267-282, 1967.
40. A.S. Fraser and D. Burnell, Computer Models in Genetics, McGraw-Hill, NY, 1970.
41. J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. Mich, Ann Arbor, 1975.

Proc. of SPIE Vol. 6228 622801-11

42. A.S. Fraser, “The evolution of purposive behavior,” Purposive Systems, H. von Foerster, J.D. White,
L.J. Peterson, and J.K. Russell (eds.), Spartan Books, Washington D.C., pp. 15-23, 1968.
43. H.J. Bremermann, “The evolution of intelligence. The nervous system as a model of its environment,”
Tech. Report, No. 1, Contract No. 477(17), Dept. Mathematics, Univ. Washington, Seattle, July, 1958.
44. H. Muehlenbein, “How genetic algorithms really work: Mutation and hill-climbing,” Parallel Problem
Solving from Nature 2, R. Maenner and B. Manderick (eds.), North-Holland, The Netherlands, pp. 15-26,
1992.
45. H.J. Bremermann, M. Rogson, and S. Salaff, “Global properties of evolution processes,” Natural
Automata and Useful Simulations, H.H. Pattee, E.A. Edlsack, L. Fein, and A.B. Callahan (eds.), Spartan
Books, Washington D.C., pp. 3-41, 1966.
46. H.J. Bremermann, “Optimization through evolution and recombination,” Self-Organizing Systems-
1962, M.C. Yovits, G.T. Jacobi, and G.D. Goldstein (eds.), Spartan Books, Washington D.C., pp. 93-106,
1962.
47. H.J. Bremermann and M. Rogson, “An evolution-type search method for convex sets,” ONR Tech.
Report, Contracts 222(85) and 3656(58), Berkeley, CA, May, 1964.
48. H.J. Bremermann, M. Rogson, and S. Salaff, “Search by evolution,” Biophysics and Cybernetic
Systems, M. Maxfield, A. Callahan, and L.J. Fogel (eds.), Spartan Books, Washington D.C., pp. 157-167,
1965.
49. H.J. Bremermann, “Quantitative aspects of goal-seeking self-organizing systems,” Progress in
Theoretical Biology, Vol. 1, Academic Press, NY, pp. 59-77, 1967.
50. H.J. Bremermann, “Numerical optimization procedures derived from biological evolution processes,”
Cybernetic Problems in Bionics, H.L. Oestreicher and D.R. Moore (eds.), Bionics Symp. 1966, Dayton,
OH, Gordon and Breach, NY, pp. 543-561, 1966.
51. H.J. Bremermann, “A method of unconstrained global optimization,” Math. Biosciences, Vol. 9, pp. 1-
15, 1970.
52. H.J. Bremermann, “On the dynamics and trajectories of evolution processes,” Biogenesis, Evolution,
and Homeostasis, A. Locker (ed.), Springer-Verlag, NY, pp. 29-37, 1973.
53. R.M. Friedberg, “A learning machine: Part I,” IBM J. Res. Develop., Vol. 2:1, pp. 2-13, 1958.
54. R.M. Friedberg, B. Dunham, and J.H. North, “A learning machine: Part II,” IBM J. Res. Develop., Vol
3, pp. 282-287, 1959.
55. M.L. Minsky, “Steps toward artificial intelligence,” Proc. of the IRE, Vol. 49:1, pp. 8-30, 1961.
56. L.J. Fogel, “Autonomous automata,” Industrial Research, Vol. 4, pp. 14-19, 1962.
57. L.J. Fogel, A.J. Owens, and M.J. Walsh, “Artificial intelligence through a simulation of evolution,”
Biophysics and Cybernetic Systems: Proc. 2nd Cybern. Sciences Symp., M. Maxfield, A. Callahan, and L.J.
Fogel (eds.), Spartan Books, Washington D.C., pp. 131-155, 1965.
58. L.J. Fogel, “On the organization of intellect,” Ph.D. dissertation, UCLA, 1964.
59. L.J. Fogel, A.J. Owens, and M.J. Walsh, “On the evolution of artificial intelligence,” Proc. 5th National
Symp. Human Factors in Engineering, IEEE, San Diego, CA, pp. 63-76, 1964.
60. L.J. Fogel, A.J. Owens, and M.J. Walsh, “Intelligent decision making through a simulation of
evolution,” IEEE Trans. Human Factors in Electronics, Vol. HFE-6:1, pp. 13-23, 1965.
61. L.J. Fogel, A.J. Owens, and M.J. Walsh, “Intelligent decision making through a simulation of
evolution,” Behavioral Science, Vol. 11:4, pp. 253-272, 1965.
62. L.J. Fogel and G.H. Burgin, “Competitive goal-seeking through evolutionary programming,” Final
Report, Contract AF 19(628)-5927. Air Force Cambridge Research Laboratories, 1969.
63. G.H. Burgin, “On playing two-person zero-sum games against nonminimax players,” IEEE Trans.
Systems Science and Cybernetics, Vol. SSC-5, pp. 369-370, 1969.
64. G.H. Burgin, “System identification by quasilinearization and evolutionary programming,” J.
Cybernetics, Vol. 2:3, pp. 4-23, 1974.
65. B.E. Lutter and R.C. Huntsinger, “Engineering applications of finite automata,” Simulation, Vol. 13,
pp. 5-11, 1969.
66. F.N. Cornett, “An application of evolutionary programming to pattern recognition,” Master’s thesis,
New Mexico State University, Las Cruces, NM, 1972.
67. D.W. Dearholt, “Some experiments on generalization using evolving automata,” Proc. 9th Intern. Conf.
Systems Science, Honolulu, HI, pp. 131-133, 1976.

Proc. of SPIE Vol. 6228 622801-12

68. J.W. Atmar, “Speculation on the evolution of intelligence and its possible realization in machine form,”
Sc.D. dissertation, New Mexico State University, Las Cruces, NM, 1976.
69. L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial Intelligence through Simulated Evolution, John
Wiley, NY, 1966.
70. B.S. Fleishman and I.L. Bukatova, “Some analytical evaluations of evolutionary simulation
parameters,” Avtomatika I Vychislitel’naya Teknika, July-Aug., no. 4, pp. 34-39 [Russian], 1974.
71. B.M. Yakobson, “Modelling evolutionary processes when designing engineering system,” Pribory I
Sistemy Upravleniua, no. 5, pp. 9-11 [Russian], 1975.
72. M.N. Anisimov and V.G. Indler, “use of evolutionary programming to control nonstationary
agricultural objects,” Elektrotekhnika, Vol. 59:4, pp. 31-35, 1988.
73. L.J. Fogel and W.S. McCulloch, “Natural automata and prosthetic devices,” Aids to Biological
Communication: Prothesis and Synthesis, Vol. 2, D.M. Ramsey-Klee (ed.), pp. 221-262, 1970.
74. I. Rechenberg, “Cybernetic solution path of an experimental problem,” Royal Aircraft Establishment,
Library Translation 1122, 1965.
75. H.-P. Schwefel, “Experimentelle optimierung einer zweiphasenduese tell 1,” AEG Research Institute
Project MHD-Straustrahlrohr 11034/68, Technical Report 35, 1968.
76. D.B. Fogel, “Asymptotic convergence properties of genetic algorithms and evolutionary
programming,” Cybernetics and Systems, Vol. 25:3, pp. 389-407, 1994.
77. G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE Trans. Neural Networks,
Vol. 5:1, pp. 96-101, 1994.
78. H.-G. Beyer, The Theory of Evolution Strategies, Springer-Verlag, Berlin, 2001.
79. D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization,” IEEE Trans.
Evolutionary Computation, Vol. 1:1, pp. 67-82, 1997.
80. W.G. Macready and D.H. Wolpert, “Bandit problems and the exploration/exploitation tradeoff,” IEEE
Trans. Evolutionary Computation, Vol. 2:1, pp. 2-22, 1998.
81. D.B. Fogel and A. Ghozeil, “A note on representations and variation operators,” IEEE Trans.
Evolutionary Computation, Vol. 1:2, pp. 159-161, 1997.
82. D.B. Fogel and A. Ghozeil, “Schema processing under proportional selection in the presence of random
effects,” IEEE Trans. Evolutionary Computation, Vol. 1:4, pp. 290-293, 1997.

Proc. of SPIE Vol. 6228 622801-13

