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ABSTRACT 

 
Evolutionary computation is a rapidly expanding field of research with a long history. Much of that history 
remains unknown to most practitioners and researchers. This paper offers a review of selected foundational 
efforts in evolutionary computation. A brief initial overview of the essential components of evolutionary 
algorithms is presented, followed by a review of early research in artificial life, evolving programs, and 
evolvable hardware. Comments on theoretical developments and future developments conclude the review. 
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1. INTRODUCTION 
 
The essential aspects of an evolutionary algorithm are shown in Figure 1. A population of candidate 
solutions to a problem is scored with respect to a so-called fitness criterion. These solutions serve as 
parents for offspring. These offspring are created via random variation of the parents in the form of 
mutations and/or recombination, or possibly other operations. The offspring are scored and the solutions 
compete for survival and the right to become parents of the next generation. This basic protocol or variants 
of it appear in virtually all evolutionary algorithms, with the exception of artificial life studies that seek to 
determine emergent properties of simulations, and also some extended variations of evolutionary 
computing such as particle swarm and ant colony methods. In the past 20 years, there have been numerous 
successful applications of this general evolutionary approach, with various extensions, in the areas of 
medicine, bioinformatics, military planning, scheduling, forecasting, and other areas. It is reasonable to 
believe that over 3000 papers are published annually in evolutionary computing around the world. 
 

Select an
Initial Population

Randomly Modify
 Individuals

Evaluate of the Worth
of Each Individual

Select a Next
Generation Population

 
Figure 1. The basic flow of an evolutionary algorithm. 
 
Evolutionary computation has a long history, which extends over 55 years. Some of the earliest progenitors 
of that history can be found even 20 years still earlier. For example, in 1932 Cannon1 noted that evolution 
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was a learning process and made a direct comparison to individual learning. In addition, Turing2 offered 
that there is an “obvious connection between [machine learning] and evolution.” By the mid-1950s, the 
idea of simulating evolution on a computer had already taken root. One of the first theoretical works on 
simulated evolution involved a robot learning to move in an arena. In this work, Friedman3,4 also remarked 
that mutation and selection would be able to design thinking machines, including chess-playing machines. 
The concept that evolution and learning are intimately connected was also offered by Campbell5,6,7 in the 
late 1950s and also 1960. 
 
Unfortunately, these historical contributions, and likely the majority of other early contributions, are 
virtually unknown in the evolutionary computation community. This unawareness is a result of a lack of 
rigor and a reflection of the immaturity of the field, as compared with say, physics, mathematics, or 
chemistry. Many innovative approaches to evolutionary computing were undertaken in the earliest days of 
computing. With current computational capabilities, we now have the computing power to explore these 
seminal ideas further. If this review paper encourages such efforts, it will have served its purpose. This 
paper focuses on historical contributions in artificial life, modeling genetic systems, evolving programs, 
and evolving hardware which may not be as well known as others in popular literature (e.g., those featured 
routinely in trade magazines). It also offers remarks on the future of evolutionary algorithms in light of 
current knowledge. Not all early and unrecognized efforts are given due attention owing to space 
limitations. Interested readers may find these covered in Fogel19. 
 

2. HISTORICAL FOUNDATIONS 
 
1.1 Artificial Life 
 
As noted in Fogel8,13, perhaps the earliest published record of any work in evolutionary computation is 
Barricelli9. Nils Aall Barricelli worked on John von Neumann’s high-speed computer at the Institute for 
Advanced Study in Princeton, New Jersey, in 1953. Barricelli’s experiments were essentially trials in the 
area of artificial life, in which numbers were placed in a grid and moved based on local interaction rules. 
His original research was published in Italian, but was republished in 1957 in English10. Two additional 
publications in 1962 and 1963 extended his work11, 12. 
 
Barricelli’s essential experiments worked as follows. Numbers were entered into a grid of predetermined 
size. Positive numbers shifted to the right, while negative numbers shifted to the left. When collisions 
occurred between two more numbers that entered the same cell in the grid, other rules were applied to 
determine how to alter the numbers. For example, suppose that a one-dimensional grid had N = 20 cells and 
numbers were distributed in those cells at the initial generation g = 0. For g = 1, the numbers would shift to 
different cells based on the arrangement of numbers at g = 0, and then progress further or “migrate” based 
on their then-current positions.  
 
To explain Barricelli’s specific migration rules, say xi,g is the numeric entry at the gth generation in cell i. 
Barricelli [2] used rules such as: 
 
(1) A number shifts n cells to the right if it is positive, or |n| cells to the left if it is negative, unless this 
results in a “collision” with another number (in which two numbers arrive at the same cell location). 
 
(2) The same number xi,g = n may reproduce m cells to the right (or left) if xi+n,g = m, again with the 
exception of a collision. 
 
(3) Reproduction may occur more than once if xi+m,g = r (where r ≠ 0, which designated an empty square), 
then  xi+r,g+1 = n, again with the exception of a collision. 
 
(4) If two numeric elements collide in a cell, then if they are equal only one copy of the number is placed in 
the cell. If the numbers are not equal, other rules are applied to determine which number to place in the cell 
or other cells.  
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Figure 2, taken from Barricelli10, shows an example of numbers propagating in time through a series of 20-
cell grids. The numbers involved are −3, 1, and 5, and also 0 representing an empty square. Starting from 
the arrangement at g = 0 at the top of the grid (usually found by using a set of playing cards), by the fourth 
generation, the pattern (5, −3, 1, −3, 0, −3, 1) appears and persists in every other generation. This example 
is a “flat” grid, but Barricelli10 noted experiments with 512 cells in a tubular design (connecting the left and 
right edges).  
 

 
 

Figure 2. A series of generations of numbers moving in a grid following the rules of Barricelli10. The first generation is 
shown in the top row of cells.  Subsequent generations are shown as successive descending rows of cells.  By the fourth 
generation, the pattern (5, −3, 1, −3, 0, −3, 1) appears and persists in each subsequent generation.  Note that a number 
with an underscore has a negative value. The figure is adapted from Barricelli10. 
 
 
Barricelli made several observations about the patterns that emerged from such simple rules, which he 
termed “organisms.” Organisms were defined to be independent if they could reproduce without requiring 
other organisms of a different pattern, which he described using the term “another species.” Conversely, if 
an organism was unable to reproduce without a continuous supply of other numbers then it was dependent, 
and described as a “parasite.” Barricelli noted patterns of recombination, including a multiple-point 
operation in which two patterns would collide and the result would be a new self-sustaining pattern with 
numbers chosen from each of the “parents.” A two-dimensional version of the experiment was also 
performed, with obvious similarities to the work of Conway’s Game of Life, popularized much later14. 
Overall, Barricelli’s search for emergent patterns is reminiscent of the search for emergent properties in 
complex adaptive systems that pervaded artificial life research in the late 1980s and early 1990s15,16. 
 
In the late 1960s, Michael Conrad offered a seminal contribution to artificial life17, the journal version of 
which was published by Conrad and Pattee18. A population of cell-like individual organisms was subjected 
to a strict materials conservation law that induced competition for survival. The organisms were capable of 
mutual cooperation as well as executing biological strategies that included genetic recombination and the 
modification of the expression of their genome. No fitness criteria were introduced explicitly as part of the 
program. Instead, the simulation was viewed as an ecosystem in which genetic, individual, and population 
interactions would occur and behavior patterns would emerge. 
 
The organisms were composed of what were essentially genetic subroutines. Individual phenotypes were 
determined by the manner in which these routines were used by the organisms. The fixed set of routines 
that they provided was somewhat limiting, but Conrad and Pattee18 accepted this limitation so long as the 
“process of modifying these featured produces a system whose behavior converges to that of a natural 
ecosystem.” In particular, Conrad and Pattee were concerned that (1) behavior that is characteristic of 
ecological succession processes should potentially emerge, (2) the processes of evolutionary search must 
agree with biological fact (i.e., nonbiological operators that would make search more “efficient” were 
precluded), and (3) the simulation should be as simple as possible to allow for studying both the 
fundamental features of ecosystems as well as the minimum necessary conditions for natural evolution. 
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The events in the evolution program took place in an environment termed the world (Figure 3). The world 
was a one-dimensional string of places. The first element in this array was linked to the last, forming a 
loop, to avoid end effects. Each place in the world was characterized by a state (A or B) and a certain 
number of material parts called chips. The organisms determined the control of the flow of the chips in the 
world. Chips were essential to persistence (i.e., survival) and reproduction, but no explicit behavioral 
strategies were introduced to acquire these chips. Any such behaviors emerged from the initial conditions 
of the simulation as the conservation of matter (a fixed number of total chips) induced a competition for 
chips among the organisms. Figure 4 shows a flowchart of the overall process. 
 

 
 

Figure 3. A graphical depiction of Conrad’s Evolve “world.” Organisms resided in places in the world, which was a 
ring of places. Chips were located in places and served as the material that organisms required. 
 
Each organism in the simulation was associated with a place in the world. Organisms operated over a range 
of contiguous places (territory). Events occurred in discrete periods with the lifespan of an organism 
extending over a number of these periods. Organisms interacted in a two-phase system: In the first phase 
they interacted with the environment and the other organisms in their local areas, while in the second phase 
chips were collected for the various behaviors, reproduction occurred (if applicable), and chips from “dead” 
organisms were deutilized (i.e., returned to a “matter pool”). The effects of birth and decay determined the 
composition of the next iteration, and the process was then repeated. 
 
As indicated above, the organisms were modeled with an explicit genotype-phenotype. An organism’s 
genome was mapped to a phenotype according to a coding function. Sixteen possible pairs of genomic 
symbols were associated with six types of phenome symbols. The organism’s immediate behavior 
depended on an “internal state” and an “input state.” The sequence of internal states, combined with the 
input states and the other organisms in the population, determined the chip-collecting behaviors of the 
organism. Organisms could allocate chips for self-repair, and reproduction was allowed when a sufficient 
number of chips had been stored. The genetic program of the organisms was subjected to both point and 
size mutations, as well as a recombination operator that consisted of breaking and splicing genomes at 
random places. The location of daughter cells created by reproduction was restricted, but was also under 
genetic control. 
 
The population size ranged from 200 to 400 organisms, depending on the number of chips made available 
at the start of the simulation. The distribution of chips was affected only by the organisms’ behavior and 
therefore the fitness criteria varied during the simulation as organisms interacted (noise was also added to 
the environment in some experiments). Attention was focused on features such as chip utilization (ratio of 
chips used to chips not used), matching ratio (successful matches to those attempted), and changes in size 
of population (survival curve). A sample result and the associate figure caption from Conrad’s primary 
work is shown in Figure 5. 
 
Some general observations of these experiments included: (1) the matching ratio of phenotypic characters 
to environmental conditions increased when the environment contained no noise, (2) adding noise led to a 
diversity of phenotypic types with no indication of impending homogeneity, (3) in general, the probability 
of recombination tended to decrease, (4) utilization of the environment tended to increase, and (5) the 
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predominant organisms carried phenome sequences that were not executed and therefore of no selective 
value. These initial simulations were extended over many years in Conrad20, Conrad and Strizich21, Rizki 
and Conrad22,23, Conrad and Rizki24, and O’Callaghan and Conrad25. 
 

 
Figure 4. The flowchart for Conrad’s Evolve program. 
 
 

 
Figure 5. A representative organism’s behavior from Conrad’s Evolve model and associated description of the 
program’s activity in the caption. 
 
Conrad’s investigations were clear precursors to the later work of Ray26 with Tierra, in which assembly 
language programs competed for CPU cycles. In each case, no explicit fitness criteria were applied to direct 
the course of evolution. 
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1.2. Modeling Genetic Systems 
 
The interest in modeling genetic systems to explore and better understand biology dates back at least to the 
work of Fraser27 in 1957, who conducted simulations involving diploid organisms represented by binary 
strings of a given length (n bits). Each bit represented an allele (dominant or recessive) and the phenotype 
of each organism was determined by its genetic composition. Reproduction was accomplished using an n-
point crossover operator in which each position along an organism’s genetic string was assigned a 
probability of breaking for recombination. Linkage groups could form between genes. This was 
accomplished by varying the probability of crossover occurring at each locus along either string.  
 
Fraser’s general procedure used a population of P parents that generated P′ offspring via recombination. 
Selection then eliminated all but P of the offspring (and all of the parents were also eliminated). Readers 
who are well versed in evolution strategies will note that this anticipated the (µ,λ) selection method. 
Selection could be applied toward extreme values of a phenotype (the equivalent of function maximization 
or minimization) or the mean values (stabilizing selection against extremes). The possibility for varying the 
number of progeny per parent was also introduced.  
 
Fraser and colleagues published numerous papers in this line of research. These works included 
Fraser28,29,30,31,32,33, Barker34,35, Fraser and Hansche36, Fraser et al.37, Fraser and Burnell38,39. Fraser and 
Burnell40, Computer Models in Genetics, was the second book in the history of evolutionary computation.  
Given the close overlap in subsequent work in genetic algorithms, as say offered in Holland41, including 
epistasis, linkage groups, recombination, binary strings, diploid representations, and so forth, it is perhaps 
surprising and certainly unfortunate that these earlier works were mostly ignored outside the field of 
genetics for over two decades. By the time of Fraser’s later contributions, say Fraser42, the models also 
incorporated inversion to build arbitrary linkages between alternative genes and were described in clear 
terms as “purposive” and “learning” (Figure 6). Thus Fraser’s model was essentially equivalent to the 
canonical genetic algorithm popularized in Holland41. 
 

 
 

 
Figure 6. Taken from Fraser42, the top portion depicts a 2-point crossover operation, and the bottom portion depicts 
inversion on labels of genes in a string. 
 
Whereas Fraser did not offer mathematical theory about his algorithms, Bremermann studied a similar 
model and did make theoretical contributions. In 1958, Bremermann43 offered an idealized model of 

Proc. of SPIE Vol. 6228  622801-6



x' xU)1 2 ••
x2 , xI2)

,

x1 x3 x3
1 2 ' ' n—i.

 

 

evolution in which heritable genes were encoded in binary strings that were processed by reproduction 
(sexual or asexual), selection, and mutation. Bremermann showed that for the onemax problem, in which 
fitness is determined by summing the number of 1s that occur in a binary string, the most favorable 
mutation probability for improvement without degeneration when the number of incorrect bits is small with 
respect to the total number of bits, n, is approximately equal to 1/n. This result was rediscovered over three 
decades later in Muehlenbein44. Bremermann also derived the generalized optimum probability of mutation 
for this problem as 1 – (m/n)1/(n–m), where m is the number of bits that are correct. Bremermann et al.45 
extended the result to hold for any fitness function that is a function of n binary variables and is a monotone 
function of the Hamming distance of its argument vector from the solution vector. 
 
Bremermann and colleagues extended this original model to become a generalized function optimization 
method in Bremermann46,49,50,51,52, Bremermann and Rogson47, and Bremermann et al.45,48. The method was 
applied in numerous experiments to linear and nonlinear optimization, including problems of up to 30 
dimensions. Bremermann considered various recombination operators, including the potential for using 
more than two parents (Figure 7).  
 

 
Figure 7. Bremermann’s studies of recombination included the potential for creating an offspring from two or more (in 
this example, three) parents (from Bremermann et al.45). 
 
1.3. Evolving Programs 
 
Conrad’s artificial ecosystem experiments described earlier involved organisms that were programs, which 
reacted to inputs, followed a sequence of steps, and generated output; however, two other earlier efforts 
were made to evolve programs to execute specific tasks.  
 
In 1958 and 1959, Friedberg53 and Friedberg et al.54 evolved machine language programs (binary language) 
to perform simple operations such as moving data from one location to another or performing the sum of 
numbers in two data locations. The speed of the available computers at the time demanded several 
procedural shortcuts in order to test the devised methods. There was a hope that structurally similar 
programs could be grouped together in classes. This concept was another forerunner of what was described 
as intrinsic parallelism in Holland41. Specifically, a class was defined to consist of all programs having a 
certain instruction at a certain location. A learning procedure was intended to compare the performance of 
two nonoverlapping classes of programs, essentially evaluating alternative instructions that might occur at a 
given location. This concept is also similar to what was later described as schemata in Holland41. 
 
A credit assignment method was invented to partition the influence of individual instructions, which 
recorded the number of overall successes and failures for each instruction. The hope was that by combining 
programs with more “good” instructions this would lead to improved programs overall. Friedberg et al.54 
noted that the evolved programs compared favorably to completely random generate-and-test methods, but 
complex problems that were broken in parts were not always solved to completion. Misky55 offered an 
unfavorable and apparently erroneous criticism of Friedberg’s work, saying that “The machine did learn to 
solve some extremely simple problems. But it took on the order of 1,000 times longer than pure chance 
would expect.” There appears to be no basis for this description. Unfortunately, Minksy’s criticism was 
well publicized and left a lasting impression of this work.  
 
Subsequent to Friedberg, Fogel56 offered the idea of simulating evolution for creating artificial intelligence, 
following earlier development of this concept in 1960 while serving at the National Science Foundation. 
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Fogel suggested that prediction is a keystone of intellect and his research focused therefore on predictive 
models, taken in the form of finite state machines (Figure 8). A finite state machine is a program that starts 
in a state and receives an input symbol and generates output and transitions to other states based on a 
stream of such inputs. 

 
Figure 8. A finite state machine from Fogel et al.57. The three-state machine is presumed to start in state A. The 
machine is designed to operate in a four-symbol environment and can handle two inputs simultaneously in the form of 
an ordered pair of symbols [e.g., (0,1)]. This could represent, for example, moves in a game by two players. The 
symbols to the right of the virgules indicate the output associated with possible inputs.  
 
A population of random finite state machines was exposed to an environment as a string symbols (e.g., 
101110011101 or 31022210), with each machine being scored in terms of how well it predicted the 
available data. The better machines were retained as parents for generating offspring via mutation of the 
number of nodes in the machine, the input-output or input-transition relationships, or the start state. The 
offspring were then compared with the parents in terms of performance and the process of variation and 
selection was continued until a prediction of the next symbol was required. At that point the best machine 
was used to make the prediction and the new datum was added to the observed environment, with the 
process iterating. 
 
This general procedure, which included prescriptions for using probabilistic selection and multiparent 
mating, was expanded and applied to problems in prediction, system identification, control, and pattern 
recognition in a series of studies (Fogel58, Fogel et al.59,60,61, Fogel and Burgin62, Burgin63,64, Lutter and 
Huntsinger65, Cornett66, Dearholt67, Atmar68, and many others).  
 
The publication of Fogel et al.69 was the first book in the field of evolutionary computation. The 
evolutionary approach to artificial intelligence received significant attention from the artificial intelligence 
community, as well as researchers in the former Soviet Union70,71,72. Notable resistance was offered from 
those following more traditional avenues of symbolic processing and heuristics73. 
 
1.4. Evolvable Hardware 
 
Recent interest in evolvable hardware has focused on evolving electronic circuits (which was suggested in 
Atmar68; however, perhaps the earliest effort in evolvable hardware evolved physical devices such as bent 
pipes, airfoils, and flashing nozzles. This research was performed by Ingo Rechenberg, Hans-Paul 
Schwefel, and Peter Bienert in 1964 and subsequently at the Technical University of Berlin, Germany. 
Instead of using conventional gradient methods to optimize these devices for various tasks, e.g., to design 
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an airfoil that minimizes drag, they used a random variation and selection method that employed throwing 
dice to make physical alterations to devices. This was published first in 1965 by Rechenberg74. In 1966, 
Schwefel75 used this “evolution strategy” to design a nozzle for convergent-divergent flow of hot water that 
would offer maximum efficiency. He built a nozzle out of brass rings of varying diameter and the 
concatenated them into a single device. By throwing dice, he changed both the number of rings in the 
nozzle as well as the diameter. Starting with a conventional design shown in Figure 9, through 45 iterations 
of variation and selection, the final design shown in the figure was obtained. These efforts led to many 
other developments in evolution strategies for numerical optimization, including the use of a population of 
solutions, the common (µ+λ) and (µ,λ) forms of selection, self-adaptation, and various forms of 
recombination. 
 

 
 
Figure 9. A series of 45 iterations of improvements from Hans-Paul Schwefel’s experiments evolving a flashing nozzle. 
Unlike the initial standard design, the final design did not use a single pinch point. 
 
 
 
 

3. FUTURE DEVELOPMENTS 
 
The field of study of evolutionary algorithms has now reached a critical mass. Only 20 years ago, it was 
easy to know virtually everyone researching evolutionary algorithms (then described as evolution 
strategies, evolutionary programming, or genetic algorithms, and then later genetic programming) 
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personally. Today, this is impossible. Within the last 10 years, there has been sufficient mixing of research 
ideas and mathematical development to show general convergence properties of evolutionary 
algorithms76,77, specific convergence properties on certain funtions78, as well as rigorous review of earlier 
theoretical work that has been proven to be incorrect or unfounded (see Wolpert and Macready79, Macready 
and Wolpert80, Fogel and Ghozeil81,82, and others; for example, claims of optimality of binary 
representation, single-point crossover, and the k-armed bandit analysis in Holland41). In light of these and 
other mathematical analyses, it has become clear that there is no longer a benefit to partitioning 
evolutionary computation into separate concepts of say genetic algorithms as opposed to evolution 
strategies. There is no theory that holds for genetic algorithms that would not hold for evolution strategies 
as they are constituted currently. Thus, the greatest advance of the field of evolutionary computation will 
come from ignoring such artificial divisions and recognizing the potential for population-based variation 
and selection broadly. 
 
Evolutionary algorithms are inherently parallel. Yet, to date, a relative minority of applications has taken 
advantage of this fact. It is not difficult, however, to construct clusters of personal computers and create the 
equivalent of supercomputing power at relatively low cost. As distributed processing becomes more 
ubiquitous, so will applications of evolutionary computing.  
 
Evolution is the most ancient primal form of learning. In contrast, research in artificial intelligence has 
typically passed over investigations into the causative factors of intelligence in order to more rapidly obtain 
the immediate consequence of intelligence. Such is the case in numerous examples of expert and 
knowledge-based systems. While these efforts have had success, such as Deep Blue’s victory over Garry 
Kasparov, world chess champion, in May of 1997, they do not advance our understanding of intelligence. 
They solve problems, but they do not solve the problem of how to solve problems. Evolution provides the 
solution to the problem of how to solve problems. Darwinian evolution accounts for the behavior of 
naturally occurring intelligent entities and can be used to guide the creation of artificial entities that are 
capable of intelligent behavior, going beyond what humans already know, and in the future, will know. 
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