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ABSTRACT 

In this paper we overview the statistical method to three-dimensionally recognize very small number of photon-counted 
objects by using integral imaging (II). A conventional Poisson probability density function is assumed for modeling the 
distribution of very small number of photons count observation. For three-dimensional (3D) recognition of the small 
number of photon counted images, the photon limited elemental images set of a 3D object is obtained using the II 
technique. Then, the virtual geometrical ray propagation algorithm and the parametric maximum likelihood estimator are 
applied to the photon limited elemental image set in order to reconstruct the irradiance of the original 3D scene pixels. 
The sampling distributions for the statistical parameters of the reconstructed image are determined. Finally, hypothesis 
testing for the equality of the statistical parameters between reference and input data sets is performed for statistical 
classification of populations on the basis of sampling distribution information. Kolmogorov-Smirnov test is conducted 
and statistical p-value is measured. It is shown in experiments that very small number of photons counted image can be 
recognizable by the integral imaging and statistical sampling methods. 

Keywords: Three-dimensional image processing, Three-dimensional image recognition, and Medical and biological 
imaging  

1. INTRODUCTION 
Integral imaging (II) has been investigated for three-dimensional (3D) sensing and visualization of objects over the last 
decade [1-9]. It has found a variety of applications including 3D object recognition, automatic analysis of 3D 
microscopic image data, and 3D display [10-12]. II is a 3D imaging technique based on integral photography. In this 
technique, multi-perspective information is obtained to extract the depth information of a 3D object. For 3D visualization 
of the object, the computational modeling of II is performed by using virtual ray propagation algorithm [11].  

There are many benefits in developing photon-limited imaging systems [13] such as artificial compound eyes for 
visualization and detection of objects in extremely dark environment or low emission intensity. These photon-limited 
imaging systems can provide very significant power savings, high timing resolution, and recognition of photons-counted 
images. In addition, image information can be compressed with high compression ratio. Therefore, such systems can be 
used in various applications such as bio-medical imaging, data processing, and night vision. 

In this paper we overview an imaging system which can provide 3D recognition of objects with a few photons [14]. We 
consider a Poisson probability density function for modeling the distribution of very small number of photons count 
observation. The II technique and maximum likelihood estimator are applied to sense and visualize the photon limited 
objects. For 3D recognition of objects with very small number of photons, statistical sampling algorithms are developed 
to be independent of the shape and profile of the photon counted objects. Kolmogorov-Smirnov (K-S) test is conducted 
in order to analyze the difference of the sampling histogram of two populations [15]. 
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The sections of this paper are as follows. Section 2 is an overview of the II and computational reconstruction. Section 3 
explains a photon count model in II system and a 3D visualization of photon counted objects. The algorithms based on 
statistical inference are described for 3D recognition of the objects having very small number of photons in Section 4. 
Experimental results are illustrated in Section 5. Conclusions follow in Section 6. 

2. PRINCIPLE OF INTEGRAL IMAGING AND COMPUTATIONAL 
RECONSTRUCTION 

II is one of 3D imaging techniques in which directional information of a 3D object as well as the irradiance of the ray 
emanating from the 3D objects can be obtained. For 3D sensing of an object, the camera array or image sensor channels 
in the II system capture two-dimensional (2D) elemental images set having different perspectives of a 3D object. The 
perspective information varies according to the image channel position from the 3D object. The pickup process of II is 
illustrated in Fig. 1, where a simple model for the 3D scene consists of two planar objects placed at two different 
positions from the image plane. It is noted that the II having a synthetic aperture or camera array can be used to obtain 
the elemental images with high resolution since the II captures each elemental image by moving a CCD at corresponding 
position of each lenslet.   

 
Fig. 1. Pickup process in integral imaging (II) having a synthetic aperture.  

For computational reconstruction of a 3D object in II, it is possible to simulate the reverse of the pick-up process using 
geometrical optics [11]. In this method, a 2D plane of the 3D scene located at a particular distance is reconstructed by 
back propagating the captured elemental images on to that distance, through the simulated pinhole arrays as shown in 
Fig. 2. The ray back propagation algorithm consists of shifting and magnifying each elemental image with respect to the 
distance of the desired reconstruction plane and the location of its associated imaging device on the pick-up plane or 
image plane. Then the magnified elemental images overlap on the reconstruction plane such that the objects originally 
located at the reconstruction distance. Finally, the full 3D scene is obtained by producing all the 2D sectional images at 
the reconstruction depths. Therefore, in the computational II a 3D image reconstruction can be obtained since the 
overlapping factor in the elemental images is changed according to the reconstruction distance.  

 

Fig. 2. Computational reconstruction in integral imaging (II). 
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3. PHOTON COUNTING INTEGRAL IMAGING FOR 3D VISUALIZATION OF 
PHOTON LIMITED OBJECTS 

A Poisson model is applied for estimating the distribution of the discrete photon count observation. If the observed signal 
is based on light, then each photon of the light carries an energy hυ, where h denotes Plank’s constant and υ is the mean 
frequency of a light. The probability for photon counting at an observation area or a pixel during exposure time interval 
follows Poisson distribution [16]. In II system, an array of regular square elements with uniform size is shown in Fig. 1. 
The array is illuminated by a photon beam such that the irradiance at the one pixel point of a 3D object is recorded on the 
corresponding one pixel position of each elemental image, where all the pixel positions are calculated by geometrical ray 
optics. The values of such pixels are assumed as a random variable following a Poisson density function.  

Equation (1) denotes a probability density function with a constraint on the total number of photons detected by each 
sensor. Therefore the photon limited images from the irradiance images according to the Eq. (1) can be simulated [14].    
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where xρ  is normalized irradiance at an observation area or a pixel x during an exposure time, NT is the total number of 

pixels of the elemental image and a random variable xC  has values 0, 1, 2, · · ·. We assumed that the Poisson parameter 
for the photon counts at each pixel in the photon limited image is proportional to the irradiance of the pixel in elemental 
image. In order to generate a photon limited elemental image having Np number of photons on the average, the following 
Poisson distribution function with the mean parameter x pNρ  at each pixel of the irradiance image can be given by: 
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For 3D visualization of the photon limited object, the generated photon limited elemental images set is back propagated 
on to arbitrary position at the reconstruction depths, through the simulated pinhole arrays. Finally computational 3D 
reconstruction of the objects having small number of photons is obtained. 

4. STATISTICAL INFERENCE FOR 3D RECOGNITION OF PHOTON LIMITED 
OBJECTS  

In this section, the statistical method for 3D recognition of objects having small number of photons is described. A 
nonparametric statistical test is used for comparison of two data histograms. Statistical sampling theory [17] is useful 
tool in determining whether the observed differences between two sampling data sets are significant. For statistical 
decision, a hypothesis test can be performed by constructing the statistical sampling distribution of a test statistic.   

In order to obtain the statistical sampling distribution of the test statistic, the integrated image n times by using the 
computational II reconstruction algorithm is reconstructed. Let i

pII  denote the ith integrated image reconstructed from the 
corresponding photon-limited elemental images set, where the photon-limited elemental image is generated with a 
random number of photons. The statistical sampling distribution of the dispersion parameter for the reconstructed 
integrated image is obtained by calculating the statistical standard deviation of the each i

pII , where i = 0,…,n. Then, 
given n ordered data samples (1), (2), ( )X X X nL  the empirical cumulative density function (ECDF) for the statistical 
distribution is calculated. A statistical K-S test [15] is applied for 3D recognition of the objects having small number of 
photons. The statistical method calculates the maximum distance between the calculated empirical cumulative 
distribution functions (ECDF) of true class reference and unknown input data histograms for a statistical parameter.  

For statistical decision about populations on the basis of statistical sampling distribution information, we set a null 
hypothesis  0H : ( ) ( )r iF u F u=  for all u and alterative hypothesis 1H : ( )r iF u F≠  for at least one u, where ( )rF u  and 

( )iF u  are ECDFs for reference and input data. Finally, we compute the statistical p-value of the K-S test statistics. 
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5. EXPERIMENTAL RESULTS  
An II system with camera array is shown in Fig. 3, where the two toy cars were used in the experiments. The toy cars 
were illuminated with a white light. In order to evaluate the presented 3D recognition system, we recorded an object’s 
elemental images set by moving a CCD camera transversally in both x and y directions. The resolution of image sensor 
array is a 2028×2044 and has a pixel size of 9μm×9μm. The 10×10 elemental images were captured. It is noted that the 
elemental images set on dynamic scenes can be captured with a single exposure by building a multiple video camera 
system [18].  

 
Fig. 3. Schematic setup of II system with camera array for 3D object visualization and recognition.  

Figure 4 shows the sectional images of the 3D scenes for the car I and II reconstructed by using computational II 
algorithm, respectively. The cars were reconstructed at distance z0 = 100cm. The photon-counted elemental images of 
the car I and II were generated according to a photon counting detection model. Figure 5 shows the subset of the 
elemental images of the car I and II with a single photon per elemental image, respectively. In Fig. 6 we show the 
sectional images of the 3D scenes for the car I and II, respectively. The sectional images are reconstructed at distance z0 
= 100cm with the corresponding photon-counted elemental images set, where we set the expected number of photons 
with N% =1, 11, and 51.  

 
Fig. 4. Sectional 3D image reconstruction at distance z0 =100cm with 10×10 elemental images set, where the size of the 

reconstructed image is 150×100 pixels. (a) car I and (b) car II.  
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Fig. 5. Subset of elemental images having small number of photons generated according to a photon counting detection 
model. (a) car I and (b) car II. 

 
Fig. 6. Sectional images of the 3D scenes reconstructed from very small number of photons-counted elemental images, 

where the 10×10 elemental images set was generated with the photon counting detection model. N%  is the expected 

number of photons per elemental image. (a) Car I with N% =1, (b) Car II with N% =1, (c) Car I with N% =11, (d) Car II 

with N% =11, (e) Car I with N% =51, (f) Car II with N% =51. 

It can be considered from Fig. 5 that recognizing the two-dimensional (2D) image with very small number of photons is 
not easy work even if many a single photon counted 2D images for a target object can be obtained at one exposure. 
However, it can be possible to recognize the target object having very low number of photons by use of the sectional 
images of the 3D scene reconstructed from the II technique if sufficient number of elemental images can be captured. 
The reconstructed image results are statistically analyzed in order to inspect the possibility of the 3D recognition of the 
objects with a very small number of photons. We first computationally reconstruct one sectional image of photon 
counting 3D scene located at distance z0 = 100cm from the sensor using the photon-limited elemental images set. The 
process is repeated 100 times and each time the statistical standard deviation of the reconstructed sectional image is 
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computed. We define the computed statistical standard deviation as random variable σ. As a result, we have 100 samples 
for the random variable σ and the statistical sampling distribution or histogram for the random variable is formed. 

The statistical K-S test is performed to compare the two histograms between reference and input data sets of known 
reference car I and unknown input data car II to perform the statistical decision. The K-S statistic tests the null 
hypothesis ( 0H : ( ) ( )r iF u F u= ) that the two histograms follow the same distributions using a level of significance. 
Figure 7 shows the computed K-S test p-value and the test statistic value versus the expected number of photons for the 
random variables σ, where we have changed the expected number of photons from N% =1 to N% =51 with an interval of 5. 
As shown in Fig. 5, it is noted that when elemental images counted with only a single photon were used, the statistical p-
value computed for random variable σ was 9.937×10-2. It means that the test statistic discriminates between the two 
different data sets (car I and car II) with approximately 90.1% accuracy. And, most of the p-values in Fig. 7 for 
comparing the two histograms or statistical sampling distributions of the random variable σ were less than 0.005. It is 
noted that the statistical p-value computed for the equality of two histograms of the random variable σ significantly 
decreases when the expected number of photons increase. Clearly, the test statistic for random variable σ discriminates 
between the two different data sets (car I and car II) with over 99.9% accuracy in the range of the expected number of 
photons 6 51N≤ ≤% , where the sample size was 100.  

Figure 8 show the cumulative density function plots of the statistical sampling distributions of known reference car I and 
unknown input data car II for the random variable σ, where the total number of elemental images was 100 and we set the 
expected number of photons with N% =11 and 51. As expected, the graphs (a) and (b) show there is large K-S 
distanceΛ between two different data sets. Therefore, the graphs lead to the conclusion that there is a large dissimilarity 
between two different classes (car I and car II). Note that the separation or the K-S distance of two different datasets 
increases when the expected number of photons N% increases. 

 

Fig. 7. Experimental results of the K-S test for checking the equality of two histograms of the reference car I and unknown 
input data car II. The histograms are determined for random variable σ. The measurements are performed versus the 

expected number of photons N% . The expected number of photons was changed from N% =1 to N% =51 with an interval 
of 5 and the total number of elemental images was 100.  
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Fig. 8. Cumulative density function plots of the statistical sampling distributions of the reference car I and unknown input 

data car II for the random variable σ, where the total number of elemental images was 100. (a) N% =11 and (b) N% =51.  

6. CONCLUSIONS 
In this paper, we have overviewed a method to provide the 3D recognition of small number of photons counted objects. 
Our approach is based on an integral imaging (II), a parametric maximum likelihood estimator, and statistical inference 
algorithms. Using II techniques, the elemental images of a 3D object are captured from different perspectives. The single 
or a few photon limited elemental images are generated by a photon-counting detection model.  

For 3D visualization and recognition of the objects with small number of photons, the integrated image of a 3D scene is 
estimated using parametric MLE on the photon-counts modeled by a Poisson density function. And then, statistical 
inference algorithms are applied for a statistical decision about populations on the basis of statistical sampling 
distribution information.   

We have presented experiments in order to verify the presented method and analyzed the integrated images measuring 
statistical properties. It was shown that a few photons counted objects can be three-dimensionally recognizable by the 
sectional images of the 3D scene reconstructed using the computational II if sufficient number of elemental images can 
be captured. In addition, the data compression and dimensionality reduction of the photon counted elemental images set 
can be achievable. A further image processing and advanced pattern recognition algorithms can be applied to the 
sectional images of the 3D scene in order to increase the 3D object recognition performance.   
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