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Introduction 
 

 
This volume contains papers presented at the conference on “Advances in X-
Ray/EUV Optics and Components VI”, held in San Diego, California, USA, on 
August 22–24, 2011, as part of the SPIE 2011 International Symposium on Optics + 
Photonics. 
 
The conference was composed of 5 sessions covering “Focusing Mirrors,” 
“Multilayer-based Optics,” “Focusing Zone Plates and Lenses,” “Facilities,” and 
“Spectroscopy.” It was complemented by a rich poster session and by a separate 
conference, Advances in Computational Methods for X-ray Optics, in the same 
programming track. 
 
This conference was focused on technological developments in X-ray/EUV optics 
for synchrotron and FEL beamlines, laser and plasma physics, and astronomy. 
Accordingly, the applications covered the spectral range from vacuum ultra 
violet to hard X rays. Topics related to simulation, software development, and 
metrology, were largely presented in the above-mentioned conference on 
computational methods. 
 
Scheduled for only one day of oral presentation accompanied by an evening 
poster session, this conference was rather dense and we would like to thank the 
authors, speakers, session chairs, programme committee members, and the 
conference participants for their contributions, and the SPIE staff for their help in 
making it a success. 
 

Christian Morawe 
Ali M. Khounsary 

Shunji Goto 
 

 

xi





In Memoriam:  
Dr. Alexander Kazimirov (1952 – 2011) 
 

 

We dedicate these proceedings to the memory of a friend, colleague, and 
fellow scientist, Dr. Alexander Kazimirov. Most recently a staff scientist at the 
Cornell High Energy Synchrotron Source in Ithaca, New York, Alex is remembered 
as a dedicated x-ray scientist, with considerable accomplishment in x-ray optics, 
and as an inspiring mentor of students. He was a regular participant and 
organizer of numerous SPIE conferences on x-ray optics applications, and he was 
on the program committee of this conference and had planned to attend as a 
session chair.  

Alex was born in the village of Glubokiy in Russia on July 29th, 1952. He completed 
his PhD studies in physics in Moscow and continued his research in Moscow, 
Stuttgart, Chicago, and Ithaca. A rare combination of talent, perseverance, and 
dedication allowed him to make contributions to science and earned the 
respect of his colleagues around the world. More importantly, Alex was a loving 
husband, father, and friend. He had a vision for his family and did everything to 
build the foundations and reach his goals. To his last minute, he kept on learning, 
exploring, and building new plans and dreams for his loved ones. On August 12th, 
2011 he completed his last ascent of Algonquin Mountain with his beloved dog 
by his side, and suffered a cardiac arrest that led to his untimely death. 

Alex earned his PhD degree in 1989 at the Institute of Crystallography, Russian 
Academy of Sciences, and stayed on to become senior researcher and head of 
the group in x-ray optics and synchrotron radiation until 1994. He then worked in 
the laboratory of Prof. Manuel Cardona in Stuttgart, Germany, until 1998, when 
he decided to cross the ocean to assume a joint position at Argonne National 

xiii



Laboratory and Northwestern University in Chicago. In 2000 he moved his family 
to Ithaca, where he accepted a position as a staff scientist and senior research 
associate at CHESS, filling pivotal roles as head of the x-ray optics group and 
beamline scientist. 

Dr. Kazimirov worked with renowned scientists across the world on frontier topics 
in x-ray optics and technique development. Early in his career he strengthened 
the foundation of the x-ray standing wave technique with a high-profile 
publication in 1998 with colleagues J. Zegenhagen and M. Cardona on the 
relationship of isotopic mass and lattice constant (Science 282, 930 (1998)). He 
worked closely with colleague V.G. Kohn to investigate the subtleties of x-ray 
beam focusing with simulations and experiments (Phys. Rev. B 75 (2007)). Alex was 
proud of how that work led, with collaborators A. Snigirev and I. Snigireva, to a 
series of careful and illuminating measurements at the ESRF on the spatial 
structure of focused x-ray beams diffracted from crystals (J. Synchrotron Rad. 16 
(2009)).  

As a staff scientist and beamline leader at CHESS, Dr. Kazimirov contributed to an 
impressive array of scientific and technical projects. Motivated by the scientific 
program of long-time friend A. Sirenko (NJIT), Alex coordinated efforts with D. 
Bilderback and the x-ray optics group to develop focusing glass capillaries and 
miniaturized channel-cut crystals to record microbeam high-resolution diffraction 
and x-ray standing wave data from novel semiconductor structures (J. Phys. D: 
Appl. Phys., Rapid Comm. 37 (2004)). Alex was very much involved with multilayer 
(ML) optics development, and, under his guidance, half of the experimental 
stations at CHESS were retrofitted with custom ML optics to extend their 
experimental capabilities. Alex worked closely with Y. Platonov and V.V. 
Martynov at Osmic Inc. (now Rigaku) to produce and evaluate several 
generations of ML substrates until a set of efficient narrow- and wide-bandwidth 
optics needed for innovative protein crystallography data collection was 
developed (J. Synchrotron Rad. 12 (2005)). 

One of the roles Alex enjoyed most at Cornell was mentoring graduate students. 
He was famous for his no-nonsense approach to carefully outlining the x-ray 
techniques and equipment students would need to accomplish their work. He 
was generous with his time. An example of his dedication is provided by Prof. M. 
Miller (Cornell), who recalls that all of the x-ray characterization research papers 
produced by his group of graduate students in the Mechanical and Aerospace 
Engineering department have Dr. Kazimirov as a coauthor. These students, as well 
as his coworkers at Cornell and around the world, have lost a talented, 
dedicated teacher and a good friend.  
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BIOMEDICAL SPECTRAL X-RAY IMAGING; 
PROMISES AND CHALLENGES 

 
Steven M. Jorgensen, Diane R. Eaker, Erik L. Ritman 

 
Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 

Rochester MN 55905 
 

ABSTRACT 
Imaging arrays with sub-millimeter detector pixels that count and allocate energy to each detected photon are now 
being introduced into biomedical computed tomography scanners.  Consequently, bremsstrahlung x-ray can provide 
the advantages of simultaneous recording of multiple quasi-monochromatic x-ray images which can be used for 
identification of various materials within the image field.  This capability increases the inherent contrast within 
biomedical CT images and also introduces the ability to use high atomic weight “foreign” elements (e.g., strontium) 
which are surrogates for “native” biological elements (e.g., calcium) to monitor tissue function (e.g., bone deposition).  
Challenges for this methodology include limited maximum fluence due to photon pile-up, charge-sharing between 
contiguous pixels and heterogeneous pixel characteristics due to manufacturing difficulties. 
 
Keywords: Dual-Energy X-ray, Micro-CT, Clinical CT, X-ray Scatter, Photon Counting, Beam Hardening, 
Photon Pile-up, Charge sharing, Kedge, X-ray fluorescence 
 

1. INTRODUCTION 
 

   Spectral x-ray imaging involves allocating the photon energy to each photon detected. Consequently, photon 
counting is an integral component of this approach. Spectral tomographic imaging has been used for decades in 
nuclear imaging in which different monochromatic gamma rays are distinguished so that Compton scatter (which has 
lower photon energy than the monochromatic gamma ray generated by the radionuclide) can be separated from the 
gamma ray of interest.1 It has also been used in dual energy x-ray CT imaging for enhancing the contrast of elements 
with a K absorption edge (Figure 1).2 
 
 
 
 
 
 
 
 
 
 
 
 
 
   However, as illustrated in Figure 2, it’s important to note that up to now the dual energy x-ray subtraction imaging 
involved broad spectrum x-ray and did not involve photon counting. The major x-ray CT companies are marketing 
clinical CT scanners which can utilize dual energy subtraction for separation of the iodine in intravascular contrast 
agent from calcium accumulations in diseased arterial vessel walls or discriminate different material contents of 
kidney stones and tissue deposits such as occur in gout.4,5 The Siemens scanner6 achieves this by use of two x-ray 
sources with one operating at up to 140 kVp and a tin filter and the other tube operated at lower voltage, e.g., 80 kVp. 
The Philips scanner7 uses a single x-ray source with a dual layer detector array in which the detector material in the 

Figure 1 - A schematic representation of the 
change in x-ray attenuation coefficient with 
change in x-ray photon energy for iodine and 
for soft tissue. If x-ray images are generated 
from a narrow bandwidth x-ray spectrum, one 
just below and another just above the photon 
energy of iodine’s K absorption edge, then their 
subtraction essentially removes the soft tissue 
but leaves a significant fraction of the iodine 
component of the image. 
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superficial array is selected for capturing low energy photons and the deep array selected for capturing the high energy 
photons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An improvement to this approach was implemented in x-ray imaging such as mammography and micro-CT which 
utilize lower photon energies.8 Figure 3 shows that the bandwidth of the bremsstrahlung can be greatly narrowed by 
use of the Kα emission of a selected metal in the x-ray source’s anode along with a metal foil filter with a Kedge just 
above the Kα of the anode.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The advantage of this approach is that there is greatly reduced beam hardening (i.e., the spectral content of penetrating 
x-ray shifts to higher energies with increasing thickness of the transilluminated object. In CT beam hardening  results 
in the “cupping” artifact10 in which the CT image grey scale varies with location within an object of uniform 
attenuation coefficient. These clinical and micro-CT approaches, however, do not fully exploit the power of spectral 
imaging because the bandwidth of the x-ray spectra used are still quite broad. Importantly, synchrotron x-ray imaging 
methods (which has sufficiently high flux to allow imaging at very narrow (e.g., 50 eV) bandwidth11) are limited by 
the fact that they typically do not count photons. Counting photons is important because it reduces the quantum noise 
to that of the detected photons and eliminates electronic noise of the imaging detector system.12 
 

Figure 2 - Left panel shows a typical x-ray spectrum of a clinical CT scanner’s x-ray source 
operated at 80 and 140 kVp. These sources were both filtered with a layer of aluminum. Note 
the considerable overlap of the two spectra. The right panel shows the two spectra with the 
140 kVp spectrum after filtration through various thin, fairly high atomic weight, metal foils. 
Reproduced with permission from Ref 3. 

Figure 3 - Three x-ray spectra generated with anodes 
made of copper, molybdenum and silver. These metals 
have Kα fluorescence peaks at 8.03&8.05 keV for copper, 
17.4&17.5 keV for molybdenum and 22.16 &21.99 keV 
for silver. When these spectra are filtered by a foil of 
nickel (Kedge 8.3keV), zirconium (Kedge 18.0 keV) or 
palladium (Kedge 24.4 keV) respectively much of the 
spectrum above and below the Kα peak  is preferentially 
suppressed leaving these quasi-monochromatic x-ray 
spectra. Reproduced with permission from Ref. 9. 
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   In recent years detector arrays have been developed that have x-ray photon counting and energy discriminating 
capabilities.13 This development now opens the door to fully exploiting spectral x-ray imaging capabilities for high 
spatial resolution x-ray imaging. The following description of one such imaging array illustrates the potential and 
technical challenges associated with this approach. 
 

2. SPECIFIC METHODOLOGY 
 
2.1 Methodological difficulties 
   Figure 4 is a schematic of the Medipix x-ray detection array developed at CERN. It shows a layer of material (silicon 
in this example) which captures x-ray photons and transports the resulting shower of electrons to the deeper surface by 
virtue of the potential gradient imposed across the material. The number of electrons in that shower being proportional 
to the x-ray photon energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Left upper panel is a schematic representation of a Medipix chip and its components. See text for 
details. Right upper panel is a magnified view of one of the 55x55µm2 CMOS circuits underlying each 
detector “pixel”. The left lower panel is a schematic representation of the bump bond between the x-ray-to-
electron converting material and the CMOS circuitry. The right lower panel shows the absorption efficiency 
of several candidate material for converting the x-ray to electrons.  (Right upper panel reproduced with 
permission from Ref. 14. Lower panels, courtesy from Dr. A. P. Butler, Univ. Canterbury, Christchurch NZ). 
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2.1.1 Charge sharing 
As illustrated in Figure 5 the charge cloud generated by the x-ray photon is sensed by one or several contiguous 
CMOS circuits in a 256x256 array beneath the layer.  This circuit counts the number of clouds that fall above the 
program-selectable energy threshold and converts their charge to cm index of photon energy. These data are stored in 
a memory with a capacity for the information about 8000 photons. 
 
   The Medipix3 detector array’s CMOS circuit also “look” at their contiguous neighbors to see if there is coincident 
detection of photons. This is important as the cloud of electrons may fall on adjacent pixels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If taken at face value this would result in several lower energy photons being detected. The CMOS circuit determines 
that they are from one photon, thus by adding the values and allocating the sum to the pixel with the highest number of 
electrons, deals with this charge sharing problem. Figure 6 illustrates the impact of this capability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Left panel is a schematic 
representation of the shower of 
electrons generated by the 
absorption of one x-ray photon. 
Note that this shower can affect the 
domain of several contiguous 
pixels. The right lower panel shows 
the charge recorded in each of 
those pixels. The right upper panel 
shows that one of the pixels is 
allocated one photon with an 
energy equal to the sum of the 
three, coincidentally recorded, 
signals. 

Figure 6 – Left panel shows the green plot spectrum recorded with the Medipix3 chip of a palladium 
103 source which generates predominantly 20 keV gamma rays and the right panel shows the green 
plot spectrum of an iodine 125 source which predominantly generates 27keV gamma rays. Note, the 
“shoulder” of low energy photons which result from the charge-sharing artifact of the chip operated in 
the “single pixel mode”. The black spectra are those generated when the chip is operated in the 
“charge summing mode”. The abscissa’s scale is in analog to digital units, which can be calibrated 
from these gamma ray emission responses. 
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2.1.2 Charge ‘pile-up’ 
   Another issue is the problem of charge pile-up15,16 in which two photons strike a pixel simultaneously and thus are 
detected as a single photon with the energy equal to the sum of the two photons. Figure 7 illustrates the impact of the 
pile-up phenomenon. In addition to reporting fewer photons than actually arrive at the detector, there is a skewing 
from lower to higher photon energies in the reported spectrum. This can only be corrected at the CMOS level by 
making it faster or by reducing the size of the detector pixel. Consequently, we deal with this by reducing the rate of 
photon delivery to a level at which the pile up effect is negligible. Pile-up and charge sharing have opposite 
consequences. Pile-up is reduced with small detector pixels but charge sharing decreases with increased pixel size. 
Hence, pixel size must be matched to the imaging application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 shows that  increasing pile-up, resulting from increasing  rate of delivery of photons caused by increased 
current in the x-ray source, results in  skewing to the right of the x-ray spectrum  measured with the silicon-based 
MPX3 imaging array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.3 Non uniform pixel sensitivity 
   Another technical issue is the heterogeneity of the individual pixel characteristic exposure to signal output curve. 
Ideally this input/output relationship is linear until it saturates beyond the capacity of the counter in the CMOS circuit. 
However due to manufacturing imperfections, the sensitivity of each pixel differs so that some saturate earlier than 
others when exposed to the same x-ray flux. Figure 9 shows that with increasing exposure the average signal from the 
array “plateaus” as more and more pixels reach their individual plateaus. However, if we expose the array in time slots 
that expose even the “weakest” pixels to just below the “knee” of their input/output curve, and repeat those exposures 

Figure 7 – Each of these curves was generated by 
exposing the chip to a constant number of photons, but at 
increasing rates of delivery by decreasing the distance of 
the x-ray source to the detector array and by 
proportionately reducing the time interval over which 
they were delivered. If there was no photon “pile-up” the 
number of photons detected should remain constant at all 
exposure rates, but as illustrated here the number detected 
decreased if those photons were delivered in less than 1 
second under these exposure conditions. As the x-ray 
source current was increased we see a proportional 
increase in the number of photons detected and an 
appearance of the pile-up effort at lower exposure rates. 

Figure 8 - The spectrum of the 
tungsten anode x-ray source as 
conveyed with the Medipix3 
imaging array when exposed to 4 
mAs at 35kVp, delivered at 
increasing mA settings for 
correspondingly shorter exposures 
so as to ensure equal total 
exposures. With increasing mA 
pile-up increases and results in the 
rightward skewing of the spectrum.  
The imaging array was operated in 
Charge Summing Mode.  

Proc. of SPIE Vol. 8143  814302-5

xix



after down-loading after each exposure, we can get the linear relationship at increased exposure by summing those 
exposures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.4 Detector fluorescence 
   Finally, there is the problem of fluorescence and x-ray scatter with the detector material.16 Silicon, Galium and 
Arsenic have fluorescence energies below 10 keV and hence are not of concern in micro-CT, mammography or 
clinical CT. However, Cadmium and Tellurium have fluorescence at about 23 and 27 keV, values which could 
significantly distort the photon energy information in micro-CT and mammography, but probably not significantly in 
clinical CT.  
 
2.2 Applications 
   An immediate consequence of energy resolving x-ray imaging is the ability to eliminate the beam hardening artifact 
in CT. Figure 10 is a plot of CT image pixel grey-scale values along a diameter through a test phantom. If the full 
spectral width is used we get the “cupped” profile  whereas if we used just a narrow bandwidth selected from that 
same exposure the “cupping “ artifact is essentially eliminated. Note the increased noise in that profile – consistent 
with the fewer photons in the narrow bandwidth spectrum used in generating this tomogram. However, if we were to 
do a CT reconstruction for each of the multiple energy bins within that broad spectrum, and then added those images 
then the “cupping” artifact would still be eliminated and the noise would be essentially the same as the single broad 
spectrum data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – The black curve indicates the impact of 
the heterogeneity of detector pixel saturation 
exposure as a function of total exposure. The red 
curve shows that if the same data are collected 
piecewise with a sequence of short-duration 
exposures, then the expected linear relationship 
results. See text for details. 

Figure 10 – The green profile is a CT value profile 
along a diameter of a plexiglas test phantom scanned 
with broad spectrum x-ray. It shows the cupping 
artifact due to beam hardening. The red profile is 
from the same diameter of the phantom, but from a 
CT image generated with the narrow bandwidth 
section selected from the broad spectrum scan data 
set. Note, the great reduction in beam hardening 
artifact and the increased noise (due to the fewer 
photons). 
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   Figure 11 illustrates the impact of multi-energy imaging on the ability to identify the signal due to an element with a 
K-edge within the range of the spectrum. In this case rubidium, with a K-edge at 15 keV, the characteristic increase in 
CT grey scale values as the photon energy increases through the K edge energy.  In this case it identifies and 
discriminates the rubidium from potassium. A possible importance here is that rubidium is a biological surrogate for 
potassium and hence muscle cell activity could be monitored by quantitating the amount of rubidium incorporated into 
muscle, a mechanism used previously using NMR spectroscopy scans to measure the uptake or washout of 87 Rb.17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   An exciting development is the use of gold-labeled nano-spheres, that are attached to antibodies targeted to specific 
cell types, which can be injected into the blood stream and then depositing preferentially in tissues such as cancer.19 
The high attenuation coefficient of gold, combined with its K absorption edge of 80.7 keV, allows detection and 
discrimination from other sources of local increase in CT grey-scale value even at relatively low concentrations of the 
nano-spheres in the tissue. However, the concentration of the nano-spheres should exceed a certain minimum in order 
to prevent loss of specificity due to the partial volume effect resulting from CT image voxels being too large relative to 
the number of nano-spheres per voxel. Figure 12 illustrates this effect with a single gold-coated 15 micrometer 
diameter micro-sphere, in water, imaged at different voxel sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Upper left panel is a schematic of the contents of a plexiglas test phantom containing samples of potassium and 
rubidium chloride solutions of different concentrations. 145 milli-equivalent is the intracellular concentration of potassium. The 
right upper panels show the quasi monochromatic CT images generated at increasing x-ray photon energy. The left lower panel 
shows the measured CT values and how these change with x-ray photon energy. The right lower panel uses the NIST18 K-edge 
of rubidium and how this information is conveyed by the 3 keV-wide spectral “bins” used in this study. The loss of the clear K-
edge results from the spectral width, but the attenuation decay as a function of increasing photon energy for rubidium clearly 
allows it to be distinguished from the potassium. 

Figure 12 - a bar graph of the CT 
grey-scale values of a single voxel 
containing a 15 micrometer 
diameter, gold coated micro-
sphere. If the micro-sphere were 
solid gold then detection of the 
microsphere in a larger voxel size 
would still be possible. 
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   Spectral imaging also has potential for greatly facilitating x-ray scatter imaging. Coherent x-ray scatter (as distinct 
from incoherent – i.e., Compton- scatter) can provide information about chemical bonds and of some repetitive 
submicron anatomical features. Figure 13 shows how this involves recording the x-ray scatter at several angles of view 
away from the illuminating x-ray beam over a range of 0 to 20 degrees. Hence, a CT scan would involve rotation 
through 360 degrees using a single slice exposure. If bremsstrahlung is used the scatter recorded at each pixel will 
have multispectral information as well as being the integral of the scatter generated along a chord of the illuminated 
object cross section. 
 
 
 
 
 
 
 
 
 
 
 
Figure14 shows that if an energy discriminating detector is used, combined with a polycapillary x-ray optic 
collimator,21 then all necessary information can be recorded from one angle of view – the spectral information now 
providing the equivalent of the angle in the arrangement illustrated in Figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. DISCUSSION 
 

   The overview of capabilities and technical challenges listed above suggests that the introduction of spectral x-ray 
imaging in clinical CT has potential for increasing the CT image contrast, signal to noise, accuracy of CT grey-scale 
values, and ability to identify and/or discriminate elements. This will expand the use of CT beyond the current 
anatomic information to increase the repertoire of functional information. Examples of the latter include quantitation 
of iron content in livers in hemachromatosis, discriminating iodine (in contrast agent) in arterial lumens from calcium 
in the arterial walls, and iron from calcium in arterial walls in atherosclerotic plaques. With this capability there will 
be stimulus for developing contrast agents based on lanthanide elements with K edges in the clinical kV ranges. 
Consequently multiple contrast agents could be used simultaneously for use in dual indicator dilution techniques such 
as blood pool versus contrast excreted via the kidney or bile or diffusing into the extravascular space as an index of 
local endothelial permeability. The method can also be extended by labeling nano-particles (e.g., used to selectively  
 

Figure 13 - A schematic of how a 
clinical multi-slice CT scanner can 
be converted to a single slice 
coherent x-ray scatter detection 
scanner. Reproduced with 
permission Ref. 20. 

Figure 14 - A schematic of a planar x-ray exposure (seen edge on) and the scatter from that plane being 
observed via a collimator held at a fixed angle to the x-ray plane. The right panel shows how the spectral 
energy values can be used to generate the momentum transfer function for the material of lucite.  The red 
profile was generated with the spectral imaging array at one angle and the black profile was generated with 
multi-angular data without energy discrimination. Modified and reproduced with permission from Ref. 22. 

Proc. of SPIE Vol. 8143  814302-8

xxii



attach to cancer cells) with a lanthanide element which can be readily detected and identified by its K-edge signature.  
Preliminary data and progress in manufacturing experience suggest that technical challenges can be overcome. 
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