KEYWORDS: Solar cells, Plasmonics, Absorption, Nanostructures, Finite-difference time-domain method, Thin film solar cells, Microcrystalline materials, Silicon solar cells, Surface plasmons
Due to the high cost of conventional crystalline silicon solar cells, researchers have been attracted towards the development of thin-film Si solar cells, where a several hundred nanometers thick amorphous Si (a-Si) or microcrystalline Si (μc-Si) solar cell layer is deposited by plasma-enhanced chemical vapor deposition (PECVD). This paper presents the use of plasmonic nanostructures in μc-Si p-i-n junction thin-film solar cells to increase the absorption in a broad spectral range. Finite-difference time-domain (FDTD) simulation results demonstrate a broadband absorption enhancement in these solar cells due to plasmonic nanostructures. The enhancement in the absorption is attributed to the enhanced electromagnetic fields in the active layer due to the excitation of surface plasmon modes and photonic Bloch modes at multiple wavelengths. Moreover, the plasmonic nanostructures lead to a significant enhancement in the shortcircuit current density of the μc-Si thin-film solar cell.
In this work, we present surface enhanced Raman scattering (SERS) based sensor chips for applications in nanomedicine. Finite Difference Time Domain (FDTD) simulations in visible, infrared and near-infrared regimes were done to model electric field enhancement in the vicinity of plasmonic nanostructures. Some of the plasmonic nanostructures simulated were present bowtie nanohole arrays and bridged-bowtie nanohole arrays in a gold thin film. Surface enhanced Raman scattering (SERS) substrates based on these nanostructures exhibit large electromagnetic enhancement of SERS. We employ numerical simulations based on the finite difference time domain (FDTD) method to determine the electric field enhancement factors (EFs) and therefore the electromagnetic SERS enhancement factor for these SERS substrates. It was observed that the resonance wavelength of these arrays of nanoholes can be tuned by altering the size of the nanoholes. It was also observed that bridged-bowtie nanohole arrays exhibit very high electric field enhancement factors (EF) for multiple wavelengths. It was observed that bridged-bowtie nanohole arrays exhibit a highest electromagnetic SERS enhancement factor (EF) of ~ 109, which is orders of magnitude higher than what has been previously reported for nanohole arrays as SERS substrates. Hence, these nanostructures can provide SERS enhancement suitable for a few-molecule detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.