Recently, we have shown the emergence of oscillations in overdamped undriven nonlinear dynamic systems subject to carefully crafted coupled schemes and operating conditions. Here, we summarize these results for a system of N = 3 coupled ferromagnetic cores, the underpinning of a "coupled-core fluxgate magnetometer" (CCFM): the oscillatory behaviour is triggered when the coupling constant exceeds a threshold value (bifurcation point), and the oscillation frequency exhibits a characteristic scaling behaviour with the "separation" of the coupling constant from its threshold value, as well as with an external "target" dc magnetic flux signal. We present assorted performance figures of the magnetometer, and also describe figure of merit (to characterize the device) that includes the effects of the sensor noise-floor as well its sensitivity.
KEYWORDS: Ferroelectric capacitors, Polarization, Capacitors, Electrodes, Electric field sensors, Ferroelectric materials, Sensors, Dielectric polarization, Data modeling, Signal detection
This paper deals with a novel strategy for the detection of weak static electric fields. The approach proposed here is
based on the exploitation of the nonlinear behaviors shown by a circuit made up by the ring connection of an odd number
of elements containing a ferroelectric capacitor. The presence of a weak external dc perturbation interacting with the
system state can be detected and quantified via its effect on the oscillation frequency and on the asymmetry of the system
output signals.
The dynamic behavior of the ferroelectric ring can be described by using the equations of the "quartic double well"
potential that model the ferroelectric capacitors where the target electric field is considered as a perturbation in the
polarization status of each ferroelectric element.
Simulation results have been obtained where it can be observed, for a coupling factor greater than the critical one, as
related to the external field amplitude, the change in the harmonic content of the permanent oscillation that the coupled
system generates.
A detailed spice model of the ferroelectric capacitor and of the ring circuit will be described in this paper together with
some results regarding the experimental characterization and modeling of ferroelectric capacitors to be included in the
actual circuit.
Several experimental confirmation have been already obtained. Work is currently in progress toward the realization of a
novel ring circuit that will include the ferroelectric capacitors presented here.
KEYWORDS: Sensors, Electric field sensors, Electrodes, Magnetism, Magnetometers, Magnetic sensors, Capacitors, Signal detection, Complex systems, Ferromagnetics
In this work we discuss the implementation of sensing devices based on ring-coupled hysteretic systems. In particular, the emergent oscillations in a ring coupled system formed by overdamped nonlinear devices having an hysteretic magnetic and electric behaviour are considered with applications to B-field and E-field measurements, respectively. Details on the implementation strategy, on the materials adopted and on the technologies will be given. The concept introduced is then extended to the area of E-field sensors taking into account nonlinear ferroelectric devices where oscillations can be obtained through a suitable connection topology in a similar way as for the magnetic field systems. The evaluation of the output signal dependence on the target electric field to be measured will be discussed and some device implementation issues will be reported. The proposed system combines benefits coming from reconsidering dated physical electro-static phenomena, with miniaturization levels provided by micro-technologies, to realize important electric field amplification. Devices based on different technologies, ranging from PCB to hybrid integrated microsystems, will be presented and discussed. Preliminary experimental results on E field sensor will be presented; the studies on B-field sensor are more mature and more comprehensive experimental results will be discussed to validate the working principle and to qualify the sensors in terms of sensitivity and noise floor.
Recently, we have shown the emergence of oscillations in overdamped undriven nonlinear dynamic systems subject to carefully crafted coupling schemes and operating conditions. Here, we summarize these results for a system of N = 3 coupled ferromagnetic cores, the underpinning of a "coupled-core fluxgate magnetometer"(CCFM); the oscillatory behaviour is triggered when the coupling constant exceeds a threshold value (bifurcation point), and the oscillation frequency exhibits a characteristic scaling behaviour with the "separation" of the coupling constant from its threshold value, as well as with an external "target" dc magnetic flux signal. We also present the first (numerical) results on the effects of a (gaussian, exponentially correlated) noise floor on the spectral properties of the system response, and extend our investigations to the large N case, wherein the noise is seen to mediate interesting spatio-temporal cooperative behavior.
Proceedings Volume Editor (2)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.