We modeled Multilayer Perceptron and Extreme Learning Machine Artificial Neural Networks (ANNs) for computing band structures (BSTs) and photonic band gaps (PBGs) of 2D and 3D photonic crystals (PhCs). We aim at providing fast ANN models which might boost the computations of BDs and PBGs regarding electromagnetic solvers. The case studies considered 2D and 3D PhCs with different lattices, geometries, and materials. Datasets for ANN training were built by varying the geometric shapes' dimensions and the dielectric constants of the case-study PhCs. We demonstrate simple and fast-training ANNs capable of providing accurate BSTs and PGBs through speedy computations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.