An enhanced multifunctional biosensor based on surface plasmon resonance is proposed and studied based on alcohol mixture filled photonic crystal fiber (PCF). The suggested biosensor has an alcohol mixture housed into a central hole which operates as a temperature dependent material. In addition, a gold nano-rod is attached at the inner surface of a large hole which is infiltrated with the analyte under study. Accordingly, both analyte refractive index and temperature sensing can be achieved using the reported biosensor where the guided core modes in the central hole can be coupled to the surface plasmon modes around the gold nano-rod. The sensitivity of the proposed biosensor is maximized by studying the effects of the structure geometrical parameters. In this regard, full-vectorial finite element method is used throughout the numerical analysis with perfect matched layer boundary conditions. The multifunctional alcohol mixture filled PCF sensor achieves very high temperature sensitivity of 13.1 nm/℃ with very high analyte refractive index sensitivity of 12700 nm/RIU. According to the literature review, the achieved refractive index and temperature sensitivities are higher than those for similar recent sensors in the same sensing range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.