ELP-OA ('Etoile Laser Polychromatique pour l'Optique Adaptative) aims at demonstrating the tip-tilt is measurable
with a Laser Guide Star (LGS) without any natural guide star. This allows a full sky coverage down to
visible wavelengths. ELP-OA is being setup at Observatoire de
Haute-Provence (OHP). To create a polychromatic
LGS, we use two pulsed dye lasers (at 569nm and 589nm) to produce a two-photons excitation of sodium
atoms in the mesosphere. The chromatism of the refractive index of the air yields a difference of the LGS
direction at different wavelengths. The position differences is proportionnal to the tip-tilt. Since the LGS isn't
sharp enough to give us a small enough error in the differential
tip-tilt, we use an interferometric projector to
improve the high spatial information in the laser spot. It requires an adaptive optics working down to 330nm.
This one is done by post-processing algorithms. Two two aperture projectors are used. Each one creates a
fringe-modulated LGS, and a better RMS error in the LGS position is obtained by measuring the information
in a normal direction with respect to the fringes. By using a two aperture projector, we also strongly decrease
the negative effect of the laser star elongation in the mesosphere, and the Rayleigh contribution near the LGS.
We propose a new optimal algorithm to retrieve the tip-tilt from simultaneous images at different wavelengths.
To enhance the RMS error of the measurements, we extend this algorithm to exploit the temporal correlation
of the turbulence.
We discuss our Polychromatic Laser Guide Star (PLGS) end-to-end model which relies on the 2-photon
excitation of sodium in the mesosphere. We then describe the status of the setup at Observatoire de Haute-
Provence of ELP-OA, the (PLGS) concept demonstrator. The PLGS aims at measuring the tilt from the LGS
without any NGS. Two dye laser chains locked at 589 and 569nm are required. These chains, are similar to those
of our PASS-2 experiment at Pierrelatte (1999). The two oscillators, preamplifiers and amplifiers are pumped
with NdYAGs. Both beams are phase modulated with a double sine function. If required, a third stage can
be added. It is expected that beams will deliver an output average power of 34W each, so that 22W will be
deposited into the mesosphere. If it is not enough, there is enough power supply to twofold it.
These lasers are being settled in the building of the OHP 1.52m telescope, partly at the first floor, and partly
at the top of the North pillar. Beams will propagate from there to the launch telescope attached to the 1.52m
one through a train of mirrors fixed with respect to the beam, so that incident angles are constant.
The coudé focus of the 1.52m telescope will be equipped with an adaptive optics device, closely derived from
the ONERA's BOA one. The Strehl ratio at 330nm for the differential tilt measurement channel is expected to
be 30-40% for r0 = 8 - 10cm. Telescope vibrations will be measured with pendular seismometers upgraded from Tokovinin's prototype. The full demonstrator is planned to run in 2010.
We briefly recall the principle of the polychromatic laser guide star, which aims at providing measurements of the tilt of incoming wavefronts with a 100% sky coverage, We describe the main results of the feasibility study of this concept undertaken within the ELP-OA porgramme. We finally summarize our plans for a full demonstrator at Observatoire de Haute-Provence.
We developed a code aimed at determining the laser parameters leading to the maximum return flux of photons at 0.33 micrometers for a polychromatic sodium Laser Guide Star. This software relies upon a full 48-level collisionless and magnetic-field-free density-matrix description of the hyperfine structure of Na and includes Doppler broadening and Zeeman degeneracy. Experimental validation of BEACON was conducted on the SILVA facilities and will also be discussed in this paper.
We describe the current status of the ELP-OA project in which we try to demonstrate in practice that it is possible to measure the tilt of a wave front using only a polychromatic laser guide star and no natural guide star. The first phase of ELP-OA, consisting of feasibility experiments, has recently been completed successfully. This paper provides an overview over the results of this first phase and over the continuation of the ELP-OA project.
Adaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS.
Adaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source, which is located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength of the observation, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. Several papers have addressed the problem of the sky coverage as a function of these parameters (see e.g.: Le Louarn et al). It turns out that the sky coverage is disastrously low in particular in the short (visible) wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (which is not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return- of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because approximately equals 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial or total sky coverage for the tilt, such as the dual adaptive optics concept, the elongation perspective method, or the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play.
KEYWORDS: Laser guide stars, Telescopes, Sodium, Stars, Global system for mobile communications, Oscillators, Wavefronts, Adaptive optics, Calibration, Photometry
We present results from measurements of the return flux from a polychromatic sodium laser guide star produced in Pierrelatte, France during the PASS-2 experiment. In the experiment, photometry of light at 330, 569, 589, and 589.6 nm emitted by mesospheric sodium under two-color laser excitation (569 and 589 nm) was performed. The variation of oscillator and laser configurations as well as simultaneous measurements of the atmospheric coherence length and the mesospheric sodium density permit a comparison of the results with atomic physics models. Using the results, we can determine the setup that produces the maximum return flux from the polychromatic laser guide star. The knowledge gained will be used to aid the ELP- OA project, which has as its goal the design, testing, and implementation of an adaptive optics system that uses a polychromatic laser guide star for wave front tilt measurements.
The Bidirectional Reflectance Distribution Function (BRDF) plays a major role to evaluate or simulate the signatures of natural and artificial targets in the solar spectrum. A goniometer covering a large spectral and directional domain has been recently developed by the ONERA/DOTA. It was designed to allow both laboratory and outside measurements. The spectral domain ranges from 0.40 to 0.95 micrometer, with a resolution of 3 nm. The geometrical domain ranges 0 - 60 degrees for the zenith angle of the source and the sensor, and 0 - 180 degrees for the relative azimuth between the source and the sensor. The maximum target size for nadir measurements is 22 cm. The spatial target irradiance non-uniformity has been evaluated and then used to correct the raw measurements. BRDF measurements are calibrated thanks to a spectralon reference panel. Some BRDF measurements performed on sand and short grass and are presented here. Eight bidirectional models among the most popular models found in the literature have been tested on these measured data set. A code fitting the model parameters to the measured BRDF data has been developed. The comparative evaluation of the model performances is carried out, versus different criteria (root mean square error, root mean square relative error, correlation diagram . . .). The robustness of the models is evaluated with respect to the number of BRDF measurements, noise and interpolation.
We describe the principle of the polychromatic laser guide star (LGS) to recover the tilt information in imaging through the atmosphere. Observations using the AVLIS laser at the Lawrence Livermore National Lab are discussed in terms of returned flux in the ultraviolet. The major items of the program ELP-OA, starting now in France, are briefly reviewed, as well as the organization of the LGS R&D in Europe. Finally the conclusion outlines the possible improvements of the polychromatic LGS to allow us to reasonably implement it at large astronomical telescopes.
Natural extracts or essences are largely used in several fields (farm- produce industry, cosmetic, perfumery, biochemistry, etc.). However, most of these complex extracts contain also toxic, carcinogenic or non desirable molecules. By using a laser directly tuned to an absorption band of the unwanted molecules, selective elimination is obtained. Advantages of this procedure are the rapidity, in situ reaction and the possibility to perform quantitative elimination. Examples such as the destruction of thujone in extract of Salvia, bergaptene in essence of Bergamote, phycocyanin in Porphyridium Cruentum or simply dye will be presented and discussed.
Among the mainly interesting parameters of an atomic vapor laser isotope separation process is the ionization yield. This parameter can be controlled as long as the laser beam spatial intensity distribution and temporal shape are well defined and not subjected to unexpected disturbing effects such as coherent propagation phenomena, leading to spatial and temporal reshaping with hot spots and pulse lengthening and delays. On the other hand, economical considerations require optically thick atomic columns which can favor such effects. In this work, we study the photoionization yield in atomic thulium vapor when propagation effects occur. We compare our experimental results with those of a coherent propagation code describing a four level system and including inhomogeneous broadening as well as degeneracies. We choose a three step photoionization scheme.
Experiments of technological interest for the project of laser isotope separation of uranium (Atomic Vapor Laser Isotope Separation, 'AVLIS') have yielded experimental data concerning the hyperfine structure (hfs) of levels of atomic uranium. The present paper reports on these data, their obtention and a parametric interpretation by the Condon Racah-Slater method. The experimental setup uses a Laser Induced Fluorescence technique in an atomic beam. Nevertheless, these experiments provide data for 28 low odd levels and 22 even levels, with an accuracy that is sufficient for a theoretical interpretation. Following the interpretation of the fine structure of the lower levels of atomic uranium by Guyon, it was reasonable to undertake a parametric interpretation of the hfs data concerning 22 of these levels on the basis of the configuration 5f36d7s2.
The multistep photoionization of uranium atoms implies choosing an irradiation scheme and this choice is only possible if the following spectroscopic parameters are known: oscillator strength, isotopic shift, hyperfine structure, lifetime, autoionization spectrum. In order to measure these parameters two kinds of experimental set-up are used: laser induced fluorescence and laser induced photoionization techniques. Since the oscillator strengths determine the laser fluences needed for an effective atomic photoionization, this parameter must be accurately measured and two different methods are used: the saturation method, and branching ratio plus lifetime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.