Integrated Circuit (IC) fabrication requires performing a long sequence of complex process steps. Among them, photolithography patterning plays the most important role to define the dimensions, doping regions, and intercon nections for each device. With the advancement of lithographic processing, minimum feature sizes continue to shrink, and the devices become denser. At the same time, the specifications for overlay accuracy, wafer critical dimension uniformity, and acceptable focus deviations also become tighter. Hence, even nanometer-sized defects on wafer substrates can ha ve a crucial impact on the quality of the lithographic exposures and limit the performance of such devices. Detection and elimination of such surface defects (“focus spots”) at the early stage of processing have been of primary concern to prevent the loss in manufacturing productivity and significant product yield degradation. In this paper, we present a focus spot monitoring framework to detect focus spots and chuck spots accurately by using wafer leveling data. We discuss different strategies how to detect focus spots, how to classify them, and how to monitor and correct them effectively. We evaluate existing focus spot monitoring solutions and how to improve upon them. Altogether, a stable, reliable focus spot monitoring solution is described for optimal focus corrections and rework decisions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.