We demonstrate the feasibility of time-bin encoding in the third telecommunication window within the frame of Quantum Key Distribution (QKD) protocol in Free Space Optical (FSO) horizontal links. Operating at a 0.6 GHz repetition rate, the QKD transmitter delivers time-bin qubits at 1558.98nm over a turbulent channel linking two nearby buildings in the city of Florence. To mitigate those effects, the receiver mounts a tip/tilt adaptive system which proves a better Free Space (FS) to fiber coupling ratio stability with respect to no active control. Furthermore, we show that the Photonic Integrated Circuit (PIC) unbalanced Mach-Zender Interferometer (uMZI) in the quantum detection scheme, combined with Superconducting Nano-Wire Single Photon Detectors (SNSPD), guarantees long stability and an high Secret Key Rate (SKR) in the order of the thousands of kilobits per second (kbps).
We propose a new feedback correction system driven by artificial intelligence (AI), in particular reinforcement learning (RL), able to learn from the turbulence pattern how to correct the distortions. Indeed, RL is utilized to solve difficult tasks in chaotic problems making predictions based on the environment responses. We apply this novel approach in a Quantum Key Distribution (QKD) free space horizontal link field-trial test within the metropolitan area of Florence operating the Quantum Communication in the third telecommunication window (1550nm) with time-bins states. We use the combination of a fast-steering mirror (FSM), a four-quadrant detector (QD), and a closed-loop to correct the turbulence-induced beam-wandering effect. Our closed-loop architecture is composed of a core Proportion-Integrative-Derivative (PID) controller and an auxiliary RL algorithm to find the optimal P, I, and D parameters. We demonstrate the robustness and effectiveness of using the RL approach to smooth the turbulence effects in communication.
In this work, we implement a proof-of-concept underwater free-space Quantum Key Distribution (QKD) system and analyze its performance in a controlled laboratory test environment. We implement a BB84 protocol with time-bin encoding operating at 520 nm. The quantum channel was composed of a five-meter-long tank equipped with the possibility of actively controlling the water turbulence. Finally, we measure the Quantum Bit Error Rate (QBER) in the various scenarios and we report the results together with those relating to the parameters of the considered channel.
Today’s society heavily relies on secure communications, which can be guaranteed by Quantum Key Distribution (QKD), the most mature quantum technology. However, achieving long-distance links without relying on trusted nodes is still challenging. An important limitation is the non-ideality of detection systems, where intrinsic dark counts can hinder key extraction. This work proposes using state-of-the-art superconducting nanowire singlephoton detectors (SNSPD) with ultra-low dark count rates (<1 Hz) to reduce the quantum bit error rate (QBER) and achieve a higher secret key rate. Together with a high-rate QKD transmitter and a self-stabilizing receiver, we enabled a key exchange over 55 dB, corresponding to 340 km over an ultra-low-loss optical fiber.
Laser sources, since their invention, have proved to be the right solution in practically all conceived applications. Recently, the so-called second quantum revolution and quantum technologies like sensing, computing, simulation or communication are triggering a new generation of sub-classical sources to tackle such novel and challenging applications. First concepts and experimental results aimed to endow quantum cascade lasers and other infrared sources with truly quantum properties will be shown.
A major challenge in photonic quantum technologies is two-photon interference from distinct quantum emitters on the same chip. Here, we show and discuss recent results on Hong–Ou–Mandel interference experiments using couples of single organic molecules within few tens of microns, yielding post-selected visibilities of up to 97%. In particular, we discuss the potential interest for future realizations of measurement-device independent quantum key distribution protocols for information-theoretic secure communication.
Quantum key distribution (QKD) is the first commercial application of the second quantum revolution. Although QKD systems have already been developed and implemented all around the world, some open challenges are limiting the overall deployment of this technology (limited key rate, limited link distance, etc.). By improving the current QKD protocols, it is possible to increase the final secret key generation rate. In this work, we compare 1-decoy with 2-decoy methods in BB84 protocol over an underwater optical fiber link connecting Malta to Italy, showing that 2-decoy can achieve more than twice the key rate of 1-decoy method.
We demonstrate the possibility of generating non-Gaussian states of light by exploiting a setup fully based on plug-and-play guided-wave components from classical telecom and non-linear optical technologies. Our scheme relies on heralded single photon subtraction from single mode squeezed states generated in a single-pass configuration in nonlinear optical waveguides and allows generating Schrodinger kitten quantum optical states. We discuss the different parameters affecting the shape of obtained states by comparing the theory and the numerical simulations.
Fundamental laws of quantum mechanics impose that arbitrary quantum states cannot be perfectly cloned
or amplified without introducing some unavoidable noise in the process. The quantum noise intrinsic to the
functioning of a linear phase-insensitive amplifier can however be avoided by relaxing the requirement of a deterministic
operation. Non-deterministic noiseless linear amplifiers that do not violate any fundamental quantum
law are therefore possible and here we present the first experimental realization of a scheme that allows noiseless
amplification of coherent states at the best level of effective gain and final state fidelity ever reached. This
scheme, based on a sequence of photon addition and subtraction, and characterized by a significant amplification
and low distortions, may become a useful tool for quantum communications and metrology, by enhancing the
discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.
We show the experimental observation of quantum states of light exhibiting nonclassical features obtained by single photon excitation of a thermal state. Such single-photon-added thermal states are the result of the single action of the creation operator on a mixed state that can be fully described classically. They show different degree of nonclassicality depending on the mean photon number of the original thermal state. The generated state is characterized by means of ultra-fast homodyne detection which allows us to reconstruct its density matrix and Wigner function by quantum tomography. We demonstrate the nonclassical behavior of single-photon added thermal states by an analysis of the negativity of the Wigner function.
KEYWORDS: Homodyne detection, Single photon, Tomography, Interferometers, Photons, Signal detection, Sensors, Michelson interferometers, Single photon detectors, Quantum information
We present a review of our recent studies concerning remotely prepared entangled bits (ebits) made of a single photon coherently delocalized between two well-separated temporal modes (or time bins). The preparation scheme represents a remotely tunable source for tailoring arbitrary ebits, whether maximally or non-maximally entangled, which is highly desirable for applications in quantum information technology. The remotely prepared ebit is analyzed by performing both single-mode and two-mode homodyne tomography with the ultra-fast balanced homodyne detection scheme recently developed in our lab. Beside the non-classical behavior typical of single-photon Fock states (negative values around the origin), the reconstructed two-mode Wigner function is found to be characterized by an intriguing phase and by correlations between the two distant time bins sharing the single photon.
KEYWORDS: Single photon, Homodyne detection, Crystals, Tomography, Signal detection, Laser crystals, Quantum efficiency, Single photon detectors, Signal processing, Quantum information
A new class of non-classical light states has been experimentally generated and their complete phase-space characterization has been achieved by quantum homodyne tomography. Such states are produced by the action of the photon creation operator on a coherent light field and are thus the result of the elementary excitation process of a classical field by a single quantum. Being intermediate between a single-photon Fock state and a coherent one, they offer the unique opportunity to closely follow the smooth evolution between the particle-like and the wave-like behavior of the light field.
We present the experimental generation of a new class of non-classical light states and their complete phase-space characterization by quantum homodyne tomography. These states are the result of the most elementary amplification process of classical light fields by a single quantum of excitation and can be generated by the process of stimulated emission of a single photon in the mode of a coherent state. Being intermediate between a single-photon Fock state and a coherent one, they offer the unique opportunity to closely follow the smooth evolution between the particle-like and the wave-like behavior of the light field and to witness the gradual change from the spontaneous to the stimulated regimes of light emission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.