We are investigating the association of mammographic density with breast cancer occurrence. With IRB approval, we collected cases of women with screening-detected breast cancer and controls. A total of 2028 patients including 329 cases was collected from the screening cohort in our institution. An experienced MQSA radiologist retrospectively reviewed the earliest available digital mammograms (DMs) and assessed breast density in terms of BI-RADS categories and percent density (PD) estimated by interactive thresholding. Survival models were built based on BI-RADS categories and strata based on PD measures, respectively. Using the pairwise log-rank test, we observed a statistically significant difference at the 5% level between BI-RADS category A and C, category A and D, category B and C, & category B and D. Similarly, we found a significant difference between curves for women with <10% density and with 20-34% density, between women with <10% density and with ≥35% density, and between women with 10-19% density and with ≥35% density. A multivariate Cox proportional hazards model was constructed using backwards variable selection with age, BI-RADS density, PD strata, and PD as independent factors. At the 5% level, the results indicated that age and PD had statistically significant influences on occurrence time. With age serving as a borderline protective factor (regression coefficient < 0, hazard ratio HR=0.99, p=.0506), PD was a risk factor (regression coefficient < 0, hazard ratio HR=1.02, p=.0001) for breast cancer occurrence. Our results showed that breast density plays an important role in the risk and occurrence for breast cancer.
Jadranka Stojanovska, Carey N. Lumeng, Cameron Griffin, Diego Hernando, Udo Hoffmann, Jonathan W. Haft, Karen M. Kim, Charles F. Burant, Kanakadurga Singer, Alex Tsodikov, Benjamin D. Long, Matthew A. Romano, Paul C. Tang, Bo Yang, Thomas L. Chenevert
KEYWORDS: Tissues, Spatial resolution, Magnetic resonance imaging, Medicine, 3D acquisition, Radiology, Image segmentation, In vivo imaging, Endocrinology, Glucose
Quantifying the amount of brown adipose tissue (BAT) within white adipose tissue (WAT) in human depots may serve as a target to combat obesity. We aimed to quantify proton density fat fraction (PDFF) of BAT and WAT in relatively pure and in mixed preparation using water–fat imaging. Three ex-vivo experiments were performed at 3 T using excised interscapular BAT and inguinal/subcutaneous WAT from mice. The first two experiments consisted of BAT and WAT in separate tubes, and the third used mixed preparation with graded quantities of BAT and WAT. To investigate the influence of partial volume on PDFF metrics, low (2.66 mm3) and high spatial resolution (0.55 mm3 acquired voxels) in two orthogonal three-dimensional sections were compared. The low-resolution acquisitions are corrected for T2* and multipeak lipid spectrum, thus considered “quantitative,” whereas the high-resolution acquisitions are not corrected but were performed to better spatially segment BAT from WAT zones. As potential BAT metrics, we quantified the average PDFF and the volume of tissue having PDFF ≤50 % (VOLPDFF ≤ 50 % ) based on the PDFF histogram. In the first experiment, the average PDFF of BAT was 23 ± 6 % and 21 ± 7.6 % and the average PDFF of WAT was 76 ± 7 % and 87 ± 7 % using high- and low-resolution techniques, respectively. A similar trend with excellent reproducibility in average PDFF of BAT and WAT was observed in the second experiment. In the third experiment over the four acquisitions, the BAT-dominant tube demonstrated lower PDFF (mean ± SD) of 55 ± 2 % than WAT-dominant ( 69 ± 4 % ) and WAT-only tubes ( 88 ± 4 % ) . Estimating VOLPDFF ≤ 50 % , the BAT-dominant tube demonstrated higher volume of 0.26 cm3 than WAT-dominant (0.16 cm3) and WAT-only tubes (0.01 cm3). The presence of BAT exhibits a lower PDFF relative to WAT, thus allowing segmentation of low PDFF tissue for quantification of volume representative of BAT. Future studies will determine the clinical relevance of BAT volume within human depots.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.