We present our first results concerning a compact dual cold atom accelerometer-gyroscope, which is incorporated within the framework of the development of a cold atom inertial measurement unit. The sensor is sensitive to rotations if the atoms enter the interferometer with an initial velocity. We therefore propose a scheme compatible with a compact multi-axis sensor in which the atoms are horizontally launched thanks to a magnetic gradient and interrogated with a single Raman laser. In this work, the quantum sensor has been hybridized with a conventional accelerometer and gyroscope, which has resulted in respectively 100-fold and 5-fold bias stability improvements compared to the conventional sensors alone. Dynamic rotation rate measurements have also been performed and demonstrated a 1% agreement between the two sensors. This work provides a pathway towards autonomous navigation using cold-atom sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.