Lithium aluminoborate glass optically activated with the lanthanide ion dysprosium is investigated for its potential as luminescent light guide. For this, ray-tracing simulations are performed on the basis of transmission, photoluminescence, and quantum efficiency measurements. The luminous flux at the end of the light guide depends significantly on its length as well as on the roughness of the output face. The best results are obtained for a light guide length of approximately 70-80 mm with the side faces of the light guide coated with a 100 % reflecting mirror and a rough output face with Lambertian scattering characteristic. The input face is coated with a half-transmitting mirror which is transmissive for the excitation wavelength of 388 nm but reflective for the emission bands in the visible spectral range. For this light guide, a luminance of approximately 20 cd/mm2 is achieved for an excitation power density of 1W/mm2. The geometry of the light guide (cuboid / cylinder) has only a slight effect on the maximum luminance value.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.