Nanoimprinting of surface-relief grating-based waveguides has the potential to produce one of the industry-leading augmented reality (AR) smart glasses, but there are still many challenges in the design, scaling, and reproducibility of these imprinted waveguides. A promising path toward mass manufacturing of optical waveguide combiners is via large-area nanoimprinting. Here, we present the complete value chain with partners involved throughout the process: from design, mastering, and materials to imprinting and metrology, to prove that this method improves not only the manufacturing throughput but also the waveguide quality. We demonstrate that the replication and image quality are true to the intended design using large area, high refractive index (n = 1.9), square (300 mm × 300 mm) glass substrates with high-refractive index resins (n = 1.9). This is shown to be valid for over 100 replications and for large area nanoimprinting (Gen5, 1100 mm × 1300 mm). Our goal is to demonstrate a viable path toward high-volume and low-cost manufacturing of AR waveguides based on surface relief gratings.
Nanoimprinting of surface-relief grating-based waveguides has the potential to result in the best performing Augmented Reality (AR) smart glasses, but there are still many challenges in the design, scaling, and reproducibility of these imprinted waveguides. We presented a promising path toward mass manufacturing of optical waveguide combiners via large-area nanoimprinting at SPIE AR/VR/MR 2022. This alternative route for manufacturing surface-relief gratings on a larger area generated much interest. This follow-up paper presents a further optimized design based on the lessons learned from the previous paper, with a particular focus on quality. The complete value chain with partners is involved throughout the process of this iterative update: from design, mastering, and materials to imprinting and metrology, to prove that this method improves not only the manufacturing throughput but also the waveguide quality. We demonstrate that both the replication and image quality is true to the intended design using large area, high refractive index (1.9 RI), square (300 x 300mm) glass substrates with high refractive index resins (1.9 RI). Our objective is to further establish this new approach towards high-volume and low-cost manufacturing of waveguides based on surface relief gratings as a viable path forward for enabling the Metaverse.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.