This monograph covers the fundamentals, fabrication, testing, and modeling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results. Graduate students, scientists, engineers, researchers, and those new to the field will find this book a handy and crucial reference because it provides a comprehensive perspective on the basic concepts and recent developments in this rapidly expanding field.
This article reports the functionality of Paint/PMN-PT and Paint/PLZT composite films for use in pyroelectric infrared sensors and energy conversion devices. Smart Paint/Lead Magnesium Niobate-Lead Titanate (Paint/PMN-PT) and Paint/Lead Lanthanum Zirconate Titanate (Paint-PLZT) nanocomposite films have been fabricated by the conventional paint-brushing technique on copper substrate. The pyroelectric, piezoelectric, and dielectric properties of the composite films were measured for their use in uncooled infrared detectors and thermal energy conversion devices. The properties investigated include: dielectric constants (epsilon' and epsilon''); pyroelectric coefficient (p); and energy conversion performance. From the foregoing parameters, material’s figure-of-merits, for infrared detection and thermal energy conversion, were calculated. The results indicated that paint composite films are functional and figure-of-merits increase with increase in amount of PMN-PT and PLZT nanoparticles in paint matrix. Based on the preliminary results obtained, composite films are reasonably attractive for use in uncooled thermal sensing elements, and thermal energy conversion devices for low power applications, especially in applications where flexible and curved surface sensors are required. With these factors in consideration, a novel cantilever system is designed and examined for its performance. The highest voltage output and power accomplished were 65 mV and 1 nano-Watts, respectively for a particular structure with a broad frequency response operating in the 31 mode of Paint/PMN-PT based harvester. Efforts have been made to investigate the performance of nanocomposite films on copper substrate to mechanical vibrations and thermal variations as well. Thus, could be utilized for energy scavenging combining piezoelectric and pyroelectric effects.
In this article, a piezoelectric energy harvesting has been developed experimentally and theoretically based on Euler- Bernoulli Theory. A PVDF piezoelectric thick film has attached along of clamped-clamped beam under sinusoidal base excitation of shaker. The results showed a good agreement between the experimental and simulation of suggested model. The voltage output frequency response function (FRF), current FRF, and output power has been studied under short and open circuit conditions at first vibration mode. The mode shape of the clamped-clamped beam for first three resonance frequency has been modeled and investigated using COMSOL Multiphysics and MATLAB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.