The SwissSPAD2/3 camera family is based on quarter megapixel single-photon avalanche diode (SPAD) time gated imagers. The 16.38-µm low-noise pixels feature a single-bit memory and built-in all-solid-state nanosecond time gating without the need for external image intensifiers. Microlenses have also been made available to increase the overall system sensitivity, including for high NA applications. SwissSPAD2/3 are coupled to FPGA platforms enabling a virtually noiseless streaming at up to 100 kpfs. A 1-bit accumulation of frames to reconfigurable number of bits was programmed on the FPGA for applications such as fluorescence lifetime imaging microscopy (FLIM). In other applications, a burst-mode read-out of 130,000 binary frames to a DDD3 memory of one sensor half was programmed on one FPGA for applications requiring full bitplanes. These initial configurations were extended to dual-FPGA systems capable of streaming data at near 100 kfps in continuous mode for long acquisition times. In such configuration one FPGA streams data from one sensor half to the other FPGA, which then sends the combined data stream to a host PC over PCIe at up to 3 GB/s. The eight PCIe lanes require careful design with differential routing and controlled impedance and the whole development presented significant hardware and firmware challenges. We also achieved full synchronization of two SwissSPAD2 camera systems over PCIe and characterized the pixel-to-pixel exposure timing alignment error to better than 150 ps with a time gate of 10 ns. The resulting platforms are unique enablers for quantum imaging applications, such as plenoptic maging, quantum LIDAR or quanta burst photography.
We present a 1 megapixel single-photon avalanche diode (SPAD) camera featuring 3.8 ns time gating and 24 kfps frame rate for 1-bit images, fabricated in 180 nm CMOS image sensor technology. The SPAD sensor was used to capture 2D and 3D scenes over 2 m with depth resolution of 5.4 mm and precision better than 7.8 mm (rms). We demonstrate extended dynamic range in dual exposure operation mode and show spatially overlapped multi-object detection in single-photon time-gated time-of-flight experiments. We further demonstrate applications of the megapixel SPAD camera for fluorescence lifetime imaging microscopy (FLIM) and light-in-flight imaging.
Developing large arrays of single-photon avalanche diodes (SPADs) with on-chip time-correlated single-photon counting (TCSPC) capabilities continues to be a difficult task due to stringent silicon real estate constraints, high data rates and system complexity. As an alternative to TCSPC, time-gated architectures have been proposed, where the numbers of photons detected within different time gates are used as a replacement to the usual time-resolved luminescence decay. However, because of technological limitations, the minimum gate length implement is on the order of nanoseconds, longer than most fluorophore lifetimes of interest. However, recent FLIM measurements have shown that it is mainly the gate step and rise/fall time, rather than its length, which determine lifetime resolution. In addition, the large number of photons captured by longer gates results in higher SNR. In this paper, we study the effects of using long, overlapping gates on lifetime extraction by phasor analysis, using a recently developed 512×512 time-gated SPAD array. The experiments used Cy3B, Rhodamine 6G and Atto550 dyes as test samples. The gate window length was varied between 11.3 ns and 23 ns while the gate step was varied between 17.86 ps and 3 ns. We validated the results with a standard TCSPC setup and investigated the case of multi-exponential samples through simulations. Results indicate that lifetime extraction is not degraded by the use of longer gates, nor is the ability to resolve multi-exponential decays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.