The impact of NO2 and other atmospheric trace gases on health and the environment is now acknowledged by governments around the world. The sources, both natural and anthropogenic, have been shown to affect the quality of life due to low air quality in densely populated areas. Consequently, the need for accurate global NO2 measurements with high spatial- and temporal resolution to monitor NO2 is becoming ever more important. Through an ESA study, TNO and KNMI have been evaluating measurement requirements and an instrument design for a ‘Compact NO2 Spectrometer’, based on a hyperspectral imaging instrument operating in the VIS (405-490nm] spectral range and aimed at combining the performance of state-of-the-art instruments with fine spatial sampling (0.5x0.5 km2). By use of a novel free-form optics a very compact low volume and low mass design has been achieved. Combining this with other small satellite design approaches for components the aim is to create a low cost instrument capable of being flown on a wide variety of space platforms. Global daily coverage can then be achieved with a relatively small constellation of instruments. The key design features are described for a ‘Compact NO2 Spectrometer’, such as the optical design approach, the use of free-form optics, an ‘athermal’ all aluminium approach. An overview of the development and airborne results from a breadboard of a small prototype system (Spectrolite) developed by TNO which uses many of the design features envisaged for this new instrument is given.
Detection of vegetation fluorescence gives information about plant functioning, stress and vitality. During the past decades several ground based laser fluorosensors have been developed to investigate these processes and to demonstrate the value of this technique.
FLEX (= FLuorescense EXplorer) is a space mission to measure the fluorescence of vegetation on earth over large areas from space. Such a mission would greatly improve the understanding and enhance the capability to quantify e.g. the role of terrestrial vegetation in global carbon sequestration. Because the fluorescence signal, which is excited by solar irradiation is low with respect to the reflected sunlight the signal from a satellite is proposed to be measured in the solar Fraunhofer lines, where the reflection signal is much reduced.
The heart of FLEX is a high resolution imaging spectrometer with 2 channels: channel 1 around the Fraunhofer lines at ‡ = 397 nm, ‡= 423 nm and/or ‡ = 434 nm and channel 2 around the Fraunhofer line at ‡ = 656 nm. The required spectral resolution will depend on the linewidth (0.02-0.3 nm).
A first definition of the field of view is 8.4 degrees, leading from an 800 km satellite altitude to a swath of about 120 km. For detection a 1024x1024 pixel frame transfer CCD detector is proposed, with a pixel dimension of 13 x 13 ‡ mm2. The maximum footprint is about 500x500m2. The optical configuration contains a scan mirror for solar calibration, for pointing the FOV in swath direction and for freezing the observed ground scene up to a few seconds to increase the signal to noise performance.
At this moment the concept of FLEX is elaborated in a feasibility study. Both the scientific and instrument requirements are updated and the concept is studied in detail. Besides a development plan for FLEX is made.
In this paper the idea and the headlines of FLEX are described.
At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol retrieval algorithms, based on requirements for up-to-date regional and global aerosol transport models. The study has resulted in instrument specifications and a concept design for aerosol detection from space. Based on the study the main requirements for a dedicated aerosol spectrometer are: a spectral range from 330-1000 nm with a spectral resolution from 2 nm (UV) to > 30 nm (NIR), observation in at least 3 polarisation directions (Stokes parameters) over a field of view (FOV) in swath directions of > 114 degrees and observation in at least 3 viewing directions (backwards, nadir, forward). The spectrometer design is a prism imaging spectrometer using a single detector array to measure the complete spectra for 2 polarisation directions. In this way the requirements for each viewing direction can be met with only 2 detector arrays. The system has a modular set-up, which makes the implementation of, for example, a change in the number of observation directions very simple. The basic requirements to discriminate between aerosol types are currently only met POLDER, that combines multiple view angles with polarization. The DARE concept shows an attractive potential for the development of next generation aerosol sensors.
The fluorescence signal emitted from vegetation is directly linked to the photosynthesis and as such may be used as an indicator for plant functioning, stress and vitality. Observation of solar induced fluorescence from space is proposed by measuring the weak signal contribution in the Fraunhofer line wavelengths. In an ESA funded study various aspects of measuring the fluorescence signal from space have been analysed for it's feasibility. Both scientific and instrumental aspects have been considered in the analysis. The scientific requirements have been studied in detail, looking to aspects such as the selection of Fraunhofer lines, the solar induced fluorescence radiance, measurement accuracy, spatial resolution, atmosphere influence, etc. This has resulted in instrument requirements, that are the basis for a trade off study of optical observation techniques. The main choice was between applying a grating spectrometer or a filter spectrometer, each having advantages and disadvantages for Fraunhofer line detection (FLD). From both spectrometer types a preliminary optical design has been made. Besides a model has been developed to evaluate the different configurations for S/N, integration time, radiance level etc. For these calculations it appeared, that the information about solar excited fluorescence intensity of vegetation is minimal. In the study of feasibility of Fraunhofer line detection from space is demonstrated, albeit, that the observation strategy will depend on the real amount of the solar excited fluorescence intensity. The results of the study are a good basis for further development of a spaceborn Fraunhofer line detector.
FLEX is a scientifically driven space mission to provide demonstration/validation of the instrumentation and technique for measuring the natural fluorescence of vegetation in the Fraunhofer lines. The payload consists of high spectral resolution (0.1 - 0.3 nm) CCD imaging grating spectrometer with two channels: one in the red (648 - 664 nm) and one in the blue (391 - 438 nm) for working with several Fraunhofer lines. The across track FOV is 8.4 degrees; ground spatial resolution is better than 0.5 X 0.5 km2. To increase the S/N ratio a steering mirror will be used, if necessary, to 'freeze' the image and also to provide plus or minus 4 degrees across track depointing. Calibration is made by viewing the sun via a diffuser plate switched into the telescope field of view. A separate CCD camera will allow cloud detection and scene identification. A TIR radiometer will provide simultaneous surface temperature measurements. The spacecraft, overall mass estimated at 200 kg, is derived from the ASI-MITA bus which provides all the necessary subsystems and stabilized platform. By use of on-board storage, ground requirements for satellite control and data link are minimized; the possibility of local stations for real time reception/distribution is also envisaged. Provisional orbit characteristics are: LEO sun synchronous, 500 - 900 km altitude. Priority will be given to highest revisit frequency on a sufficient number of selected test sites.
Conference Committee Involvement (7)
Optical Design and Engineering IX
8 April 2024 | Strasbourg, France
Optical Design and Engineering VIII
13 September 2021 | Online Only, Spain
Optical Design and Engineering VII
14 May 2018 | Frankfurt, Germany
Optical Design and Engineering VI
7 September 2015 | Jena, Germany
Optical Design and Engineering V
26 November 2012 | Barcelona, Spain
Optical Design and Engineering IV
6 September 2011 | Marseille, France
Optical Design and Engineering
2 September 2008 | Glasgow, Scotland, United Kingdom
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.