Fibertek has developed a space qualifiable 50W 8Ch. WDM Amplifier prototype that is designed to meet all the environmental and optical requirements of a DSOC mission. The deliverd amplifier is optimized for efficiency and athermal performance achieving 22% e-o efficiency. The high TRL 1.5-μm high TL fiber amplifier supports up to 6W/channel, with >128-ary pulse-position-modulation (PPM) format, and with 25-nm gain-flat bandwidth. Output electro-optic characteristics, the System Reliability Analysis, Mechanical Thermal analysis and Mechanical Structural and Vibration analysis of the high TRL delivered laser prototype are presented. A power efficient TDM based FWM mitigation technique that improves PEV performance of Tx, is demonstrated.
This paper describes progress toward a space -based 51 W average power amplifier for deep space PPM and Earth GEO links. We demonstrated a broadband WDM amplification at 50W with flat gain across a 25 nm bandwidth. Similarly, for 5 W amplifier we demonstrated a flat gain across a 32 nm bandwidth. These amplifiers demonstrate the feasibility for multi-channel space optical communications links. To increase the bandwidth GEO links to multi-Tbps and deep space links to > Gbps. The laser supports kW/channel SBS limited peak power for PPM and achieves an optical-to-optical efficiency of > 40%. In a separate but related effort for a deep space uplink beacon, we achieved 500 W average power, 2.6 kW peak power PPM (2,2) for a 1 μm uplink transmitter. Reliable SBS free operation is achieved with phase modulation resulting in 26 GHz transmitter linewidth. Uplink transmitter is optimized for 65 usec (pulsewidth) slot size—achieving fastest possible rise/fall times (<10 usec) and pulse uniformity.
We demonstrate the use of spectral angular dispersion in quasi-phase-matched second-harmonic generation (SHG) of 138 fs pulse at 1550 nm in a 1-cm-long crystal of periodically-poled lithium niobate (collinear acceptance bandwidth 13 times narrower than the first-harmonic bandwidth) with minimal spectral narrowing. In addition, we discuss the unique potential of quasi-phase-matched nonlinear materials in noncollinear SHG, and compare this technique to other methods for broadband frequency conversion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.