KEYWORDS: Raman spectroscopy, Single photon avalanche diodes, Calcite, Fluorescence, Single walled carbon nanotubes, Signal to noise ratio, CMOS sensors, Medical research, Imaging spectroscopy, Diamond
Time-resolved Raman and fluorescence lifetime spectroscopy imaging yields new research insights with great potential in applications including biomedical diagnostics, carbon materials, and battery development. Single Photon Avalanche Diode (SPAD) arrays are ideal for such applications and we present to our knowledge the first time-resolved Raman images obtained with such sensors. Utilizing motorized and confocal scanning configurations we obtain near shot-noise limited performance, room temperature operation, millisecond spectral acquisition times, and simultaneous acquisition and discrimination of Raman and fluorescence with high spectral resolution and range. Detailed images and spectra from samples including calcite, diamond, and single-wall carbon nanotubes demonstrate the possibility of high-resolution time-resolved Raman and fluorescence imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.