Now, terahertz (THz) technologies have been actively studied and applied in various biomedical applications including cancer diagnosis. It is related with unique features of THz spectroscopy, such as high sensitivity to water and other polar molecules, the presence of resonant peaks of various biomolecules in the THz frequency range, harmless of THz radiation to biological tissues. In this work, we have investigated different types of gastric tissues using THz spectroscopy and obtain refractive indices in the frequency range from 0.2 to 1 THz. Fourier transform infrared spectroscopy (FT-IR) was also applied in order to see what’s components of tissues make the most significant contribution in optical response and, therefore, allow to discriminate cancer.
Terahertz time-domain spectroscopy is a unique spectroscopic technique that determines amplitude and phase change resulting from terahertz wave interaction with material. The method terahertz time-domain polarimetry may be an alternative method. It is a characterization technique in which the change of polarization state of the wave transmission through the sample is measured. We propose analytical description of extraction the diagonal and off-diagonal components of permittivity tensor of materials in the terahertz frequency range using terahertz time-domain polarimetry. Using the diagonal and off-diagonal components of the permittivity tensor of materials, the effective mass, Hall mobility, and scattering time can be calculated.
At present, due to the rapid development of THz technology in medical applications, it becomes urgent to develop stable test objects (phantoms) for calibration, optimization of the operation of devices, and verification of the research methods used. In this work, a five-component phantom has been developed based on water, glycerin, starch, bentonite, and gelatin, and it was shown that these phantoms can be used as indicators of the level of dehydration of the renal tumor tissue. The mechanical properties of the phantom were investigated, the dispersions of the refractive index and absorption coefficient of the biocomposite were determined in the range from 0.2 to 1 THz. To simulate the optical parameters of a phantom depending on the concentration of inclusions, an iterative method was developed and it was found that this method makes it possible to simulate the optical parameters of a phantom at low concentrations of bentonite. It is shown that in the structure of a five-component phantom, during fabrication, clusters of starch particles are formed, and the resonant interaction of the incident THz radiation with cluster particles leads to the excitation of whispering gallery modes.
Significance: A new concept of a biotissue phantom for terahertz (THz) biomedical applications is needed for reliable and long-term usage.
Aim: We aimed to develop a new type of biotissue phantom without water content and with controllable THz optical properties by applying graphite powders into a polyvinyl chloride plastisol (PVCP) matrix and to give a numerical description to the THz optical properties of the phantoms using the Bruggeman model (BM) of the effective medium theory (EMT).
Approach: The THz optical properties of graphite and the PVCP matrix were measured using THz time-domain spectroscopy, which works in the frequency range from 0.1 to 1 THz. Two phantoms with 10% and 12.5% graphite were fabricated to evaluate the feasibility of describing phantoms using the EMT. The EMT then was used to determine the concentration of graphite required to mimic the THz optical properties of human cancerous and healthy oral tissue.
Results: The phantom with 16.7% of graphite has the similar THz optical properties as human cancerous oral tissue in the frequency range of 0.2 to 0.7 THz. The THz optical properties of the phantom with 21.9% of graphite are close to those of human healthy oral tissue in the bandwidth from 0.6 to 0.8 THz. Both the refractive index and absorption coefficient of the samples increase with an increase of graphite concentration. The BM of the EMT was used as the numerical model to describe the THz optical properties of the phantoms. The relative error of the BM for the refractive index estimation and the absorption coefficient is up to 4% and 8%, respectively.
Conclusions: A water-free biotissue phantom that mimics the THz optical properties of human cancerous oral tissue was developed. With 21.9% of graphite, the phantom also mimics human healthy oral tissue in a narrow frequency range. The BM proved to be a suitable numerical model of the phantom.
Recent years, polarimetry in the terahertz frequency range has gained popularity. Polarimetry is a technique used to measure the polarization state of electromagnetic waves transmitted through samples. The ellipticity angle, the azimuth rotation angle, complex optical properties of materials can be obtained by terahertz timedomain polarimetry. This allows for obtaining more comprehensive information about the object. In this paper, we study diagonal and off-diagonal components of the permittivity tensor of thin bismuth-based films using terahertz time-domain polarimetry
We propose a modified approach to more detailed study of gyrotropic materials using terahertz (THz) ellipsometry method based on the magneto-optical Kerr effect (MOKE). This approach allows to obtain polarization properties and to calculate the permittivity tensor of materials which are reflective or opaque in THz frequency range. The method allows to measure any values of the diagonal and off-diagonal components of the permittivity tensor and can be used for materials with a strong magneto-optical response.
Non-invasive diagnostics methods are very helpful for cancer diagnosis and they are a research hotspot in the field of biomedicine. Terahertz (THz) photonics is an emerging technology that can be applied in the field of medical diagnostics. This is due to unique features of THz radiation such as harmlessness to biological tissues, strong absorption by water, ability to identify various biomolecules, etc. In this work we have investigated different types of normal and cancer fresh tissues of the stomach using terahertz time domain spectroscopy in reflection mode. Refractive indices of mucous, serous and tumor stomach tissues were obtained in the frequency range of 0,2 - 1 THz. These optical properties are higher for cancer tissue than for mucosa and lower than for serosa. Thus possibility of discrimination of tumor from normal stomach tissue was demonstrated. This study has practical significance for the field of clinical cancer diagnosis and will help to better understand the specifics of the method of pulsed THz spectroscopy applicable to this field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.