We developed a new germanium reflective echelle grating fabricated by Canon Inc. for HISPEC (The High- Resolution Infrared Spectrograph for Exoplanet Characterization) for the Keck telescope. We employed germanium as a substrate, an ideal material to achieve small wavefront error (WFE) and high diffraction efficiencies close to the theoretical limit, with robust wavefront stability against temperature change. Furthermore, we developed a grating with an apex angle of less than 90 degrees to enhance the diffraction efficiency of both polarization states. We report that the full-size gratings with 80-degree apex angles show very high diffraction efficiencies, 95% of the theoretical limit, and very small WFE (∼ 13 nm). In addition, we present WFE measurements of a small prototype germanium echelle grating under cryogenic conditions, and we confirmed that the WFE of the diffracted beam is almost identical at room temperature and at 84 K.
The extragalactic background light (EBL) is the integrated diffuse emissions from unresolved stars, galaxies, and intergalactic matter along the line of sight. The EBL is regarded as consisting of stellar emissions and thus an important observational quantity for studying global star formation history throughout cosmic time. Intensity and anisotropy in the near-infrared EBL as measured by the Cosmic Infrared Background ExpeRiment (CIBER), NASA’s sounding rocket experiment, and previous infrared satellites exceed the predicted signal from galaxy clustering alone. The objective of CIBER-2 is to unveil the EBL excess by observing it at extended wavelengths into the visible spectrum with an accuracy better than CIBER. The onboard instrument of CIBER2 comprises a 28.5-cm telescope cooled to 90K, and three HAWAII-2RG detectors coupled with dual-band filters for photometric mapping observations in six wavebands simultaneously and with linear variable filters for lowresolution spectroscopy. Although CIBER-2 made a successful first flight from White Sands Missile Range in New Mexico in 2021, technical problems such as contamination of thermal radiation from the rocket chassis and degradation of the mirror coat were recognized. Despite a successful second flight in 2023 solving the problems with the revised onboard instrument, the experiment was aborted because of trouble with the rocket tracking system. In this paper, we describe the parachute-recovered payload rebuilt after the second flight and the testing, and we report the successful flight on May 5th 2024.
We describe scientific objective and project status of an astronomical 6U CubeSat mission VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific goal of VERTECS is to reveal the star-formation history along the evolution of the universe by measuring the extragalactic background light (EBL) in the visible wavelength. Earlier observations have shown that the near-infrared EBL is several times brighter than integrated light of individual galaxies. As candidates for the excess light, first-generation stars in the early universe or low-redshift intra-halo light have been proposed. Since these objects are expected to show different emission spectra in visible wavelengths, multi-color visible observations are crucial to reveal the origin of the excess light. Since detection sensitivity of the EBL depends on the product of the telescope aperture and the field of view, it is possible to observe it with a small but wide-field telescope system that can be mounted on the limited volume of CubeSat. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U-sized telescope optimized for observation of the visible EBL. The bus system composed of onboard computer, electric power system, communication subsystem, and structure is based on heritage of series of CubeSats developed at Kyushu Institute of Technology in combination with high-precision attitude control subsystem and deployable solar array paddle required for the mission. The VERTECS mission was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We started the satellite development in December 2022 and plan to launch the satellite in FY2025.
Extragalactic Background Light (EBL), the cumulative light from outside the galaxy, is a crucial observational target for understanding the history of the universe. We are developing a CubeSat; VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) with a 6U size (approximately 10 × 20 × 30 cm), equipped with Solar Array Wings (SAW). Our mission is to conduct extensive observations of the visible EBL. The satellite is designed to operate in a sun-synchronous orbit at an altitude of 500-680 km (approximately 15 orbits per day) and observe the EBL on the shadow side to avoid stray light from the Sun and Earth. To observe EBL, a high-performance CMOS sensor, attitude control devices, and high-speed communication equipment X-band are essential. We should note that these components these components consume a significant amount of power. Therefore, some strategic operational plans are necessary to operate this CubeSat within the limited power resources. In addition, VERTECS needs to meet its mission requirements, conducting 10 observations, 4 data downlinks, and 1 command uplink within a day. We have constructed some operational scenarios utilizing attitude control and SAW to meet these requirements, and we also constructed a power budget simulation for VERTECS. In this presentation, we describe how we plan to operate VERTECS utilizing the subsystems and the results of the power simulation during the operation.
KEYWORDS: Satellites, Electron beam lithography, Analog to digital converters, Galactic astronomy, Satellite communications, Control systems, Visible radiation, Stars, Engineering, Optical filters
The Visible Extragalactic background RadiaTion Exploration by CubeSat (VERTECS) is designed for observing Extragalactic Background Light(EBL). VERTECS mission requires attitude control stability better than 10 arcsec (1σ) per minute, pointing accuracy better than 0.1 deg, and the slew rate faster than 1 deg per sec. We discuss the software-in-the-loop (SIL) attitude simulator simulation to verify whether the current Attitude Determination Control System (ADCS) design and the planned orbit can meet the requirements for EBL observations. We simulate the attitude control system with the simulation software, taking into account the attitude control commands, the parameters of the ADCS hardware, and the expected attitude disturbances in the assumed orbit. This simulation shows the sequence of attitude maneuvers needed to meet the requirement. The simulation results indicate that the current observation sequence is feasible.
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy and is a crucial observational quantity in the broader study of the history of cosmic structures. In the nearinfrared EBL, there have been measurements of an emission component several times brighter than the cumulative light from extragalactic galaxies. This unknown radiation component has led to proposals for candidate source objects, such as first stars and galactic halo brown dwarfs. These source objects exhibit distinct radiation spectra in the visible wavelength. The VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) project is focused on continuously observing the visible EBL using a wide-field small telescope on a 6U CubeSat. The primary characteristic of this telescope is its high-throughput (SΩ > 10−6 m2sr). The 3U-sized optical telescope onboard this satellite consists of a lens optics with a total field of view of 6° × 6°, pixel field of view of 11” × 11”, a highly sensitive and low-noise detector module, and a baffle to eliminate stray light from the Sun and Earth. Additionally, color filters divide the wavelength range from 400 to 800 nm into four bands. Our observation strategy involves capturing 60-second exposure images while shifting the observed field by 3° increments and stacking the acquired images to perform photometry in the four bands. Thus far, most of the telescope design has met the required specifications, and the project is currently advancing towards the production of an engineering model. This project was selected in the JAXA-SMASH and is currently progressing in satellite development with a planned launch in the 2025 fiscal year. In this presentation, we will report on the strategy for observing the visible EBL, the progress in the development of the optical telescope, and the future plans.
Structural, Thermal and Optical Performance (STOP) analysis is performed to investigate the stability of the telescope to be onboard the Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE). In order to perform one of the prime science objectives, high-precision astrometric observations in the wavelength range of 1.0–1.6 µm toward the Galactic center to reveal its central core structure and formation history, the JASMINE telescope is requested to be highly stable with an orbital change in the image distortion pattern being less than a few 10 µas after low-order correction. The JASMINE telescope tried to satisfy this requirement by adopting two design concepts. Firstly, the mirror and their support structures are made of extremely low coefficientof-thermal-expansion materials. Secondly, their temperatures are highly stabilized with an orbital variation of less the 0.1 ◦C by the unique thermal control idea. Through the preliminary STOP analysis, the structural and thermal structural feasibility of the JASMINE telescope is considered. By combining the results of the structural and thermal design, its thermal deformation is estimated. The optical performance of the JASMINE telescope after the thermal deformation is numerically evaluated. It is found that the thermal displacement of the mirrors in the current structural thermal design produces a slightly large focus-length change. As far as the focus adjustment is adequately applied, the orbital variation of the image distortion pattern is suggested to become acceptable after the low-order correction.
The High-Resolution Infrared Spectrograph for Exoplanet Characterization (HISPEC) is a new instrument for the W. M. Keck Observatory that enables R∼100,000 spectroscopy simultaneously across the y, J, H, and K astronomical bands (0.98-2.5 μm). The fiber delivery subsystem of HISPEC is responsible for routing science and calibration light throughout the observatory efficiently. It consists of high-performance single mode fibers, a photonic lantern, mechanical and MEMS-based fiber switchers that allow for the reconfiguration of light paths. To efficiently cover this large wavelength range, a silica fiber is used for the y&J bands and the 1×3 photonic lantern while a ZBLAN fiber is used for the H&K bands. The HK fiber is a custom design by Le Verre Fluore. The fibers route the science light from the focal point of the adaptive optics system to spectrographs in the basement ∼65 m away, hence, the fibers must be very efficient. To calibrate the instrument, several mechanical fiber switchers can be used to direct calibration light to the spectrograph or the front of the optical train. Some switchers must make over 800 cycles annually, while maintaining sub-3% coupling losses between fibers with core sizes of 4.4 μm. To achieve this, extensive testing was conducted, in which throughput and dust accumulation were monitored to determine how these parameters are impacted by switch preparation procedures and ambient environmental conditions. We developed systems to automatically and remotely clean and image fiber end faces in situ. We have created a protocol that allows us to achieve thousands of switch connections reliably. Additionally, through the 25,000+ switch cycles ran during testing, we identified shortcomings in the design of these mechanical fiber switchers which will be remedied for the final instrument.
The South Africa Near-infrared Doppler instrument (SAND) is a time-stable high-dispersion spectrograph, covering the z- and Y-bands simultaneously (849 - 1085 nm) with the maximum spectral resolution of ∼60,000. We aim to monitor the radial velocity of M-dwarfs with the precision of a few m/s level, which enables us to search for habitable exoplanets. Our another scientific motivation is the statistical investigation of young planets and stellar atmosphere to comprehensively understand the formation senario of stellar systems. We are planning to install the SAND to telescopes at the South African Astronomical Observatory (SAAO) in Sutherland, since the Southern sky covers plentiful stellar associations with young stars. The SAND is a fiber-fed spectrograph, and we can change telescope used to collect the star light by switching the fiber connection. It will be operated mainly with two telescopes: the Prime-focus Infrared Microlensing Experience telescope (PRIME) and the InfraRed Survey Facility (IRSF), which both are managed by universities in Japan. This strategy of using multiple telescopes gives us opportunities of frequent and long-term observations, which provides well phase coverage in radial velocity monitoring and results in non-bias search for exoplanets. Most of the components used in the spectrograph and the fiber injection module have been fabricated. We will present the detailed status and recent progress: designing the fiber injection module and the thermal control system, examination of fiber characteristics, and estimating our target candidates.
The mid-infrared spectrometer and camera transit spectrometer (MISC-T) is one of the three baseline instruments for Origins Space Telescope (Origins) and provides the capability to assess the habitability of nearby exoplanets and search for signs of life. MISC-T employs a densified pupil optical design, and HgCdTe and Si:As detector arrays. This optical design allows the instrument to be relatively insensitive to minor line-of-sight pointing drifts and telescope aberrations, and the detectors do not require a sub-Kelvin refrigerator. MISC-T has three science spectral channels that share the same field-of-view by means of beam splitters, and all channels are operated simultaneously to cover the full spectral range from 2.8 to 20 μm at once with exquisite stability and precision (<5 ppm between 2.8 to 11 μm, <20 ppm between 11 and 20 μm). A Lyot-coronagraph-based tip–tilt sensor located in the instrument fore-optics uses the light reflected by a field stop, which corresponds to 0.3% of the light from the target, to send fine pointing information to the field steering mirror in the Origins telescope. An additional MISC Wide Field Imager (WFI) is studied as an upscope option for the Origins. MISC-WFI offers a wide field imaging (3 ′ × 3 ′ ) and low-resolution spectroscopic capability with filters and grating-prisms (grisms) covering 5 to 28 μm. The imaging capability of the MISC-WFI will be used for general science objectives. The low-resolution spectroscopic capability in MISC-WFI with a resolving power R ( = λ / Δλ) of a few hundreds will be used to measure the mid-infrared dust features and ionic lines at z up to ∼1 in the Origins mission’s Rise of Metals and Black Hole Feedback programs. The MISC-WFI also serves as a focal plane pointing and guiding instrument for the observatory, including when the MISC-T channel is performing its exoplanet spectroscopy observations.
We are developing a high-resolution near-infrared spectrograph for exoplanet searches with telescopes in Suther- land, South Africa; the South Africa Near-infrared Doppler (SAND) instrument. It covers the z- and Y -bands (0.83–1.10 µm) simultaneously with a maximum spectral resolution of 55, 000. This specification enables the precise radial velocity (RV) measurements to search for both giant planets around young stars and habitable planets around nearby M-dwarfs. The SAND is a fiber-fed instrument and, therefore, can be installed into several telescopes at the same site by changing the fiber connection. It will be operated mainly on the PRIME telescope, which is newly developed by Osaka University in Japan. The InfraRed Survey Facility (IRSF) and the Southern African Large Telescope (SALT) are also candidate telescopes for the installation. Inside the SAND spectrograph, a star image ejected from the fiber is sliced half and each sliced image is spectrally dispersed by an echelle grating. As a reference source for the wavelength calibration, light transmitted from a Fabry-Perot Etalon is simultaneously injected into the spectrograph and share the almost identical optical pass. The SAND is expected to realize RV-measurements for targets in large stellar associations at the southern sky, with exclusive and flexible use of the telescope time.
The total integrated emission from galaxies, known as the Extragalactic Background Light (EBL), is an important observable for understanding the history of star formation over the history of the universe. Spatial fluctuations in the infrared EBL as measured by the Cosmic Infrared Background ExpeRiment (CIBER), Spitzer and AKARI exceed the predicted signal from galaxy clustering alone. The CIBER-2 project seeks to extend CIBER observa- tions of the EBL throughout the near infrared into the optical, through measurements above Earth's atmosphere during a suborbital sounding rocket flight. The experiment has a LN2-cooled 28.5 cm Cassegrain telescope along with three optical paths and dichroic beamsplitters, which are used to obtain three wide-field images in six broad spectral bands between 0.5-2.0 μm. The three focal planes also contain linear variable filters (LVFs) which simultaneously take spectra with resolution R=20 across the same range. CIBER-2 is scheduled to y multiple times on a Black Brant IX sounding rocket from White Sands Missile Range in the New Mexico desert. For the first flight, scheduled for early 2021, we have completed a variety of pre-flight optical tests, which we use to make focus adjustments, spectral response measurements, and absolute photometric calibrations. In this paper, we describe the methods behind these tests and present their results for pre-flight performance evaluation. In particular, we present measurements of the PSF for each broad spectral band, along with absolute calibration factors for each band and the LVF. Through monochromator scans, we also measure the spectral responsivity of each LVF as a function of position.
Extragalactic background light (EBL) consists of entire radiation emitted throughout the cosmic history and is one crucial observable quantity to study astrophysics in the early universe, such as first stellar objects or primordial black holes. In the visible and near-infrared, zodiacal light (ZL), sunlight scattered by interplanetary dust, is the brightest foreground for observer in the near-earth orbit and its uncertainty limits accuracy of the EBL measurement. To overcome this problem, observations from heliocentric distance beyond 5 au, where the ZL is negligible, is promising. To achieve the EBL observation in deep space, we have been developing EXo- Zodiacal Infrared Telescope (EXZIT) onboard a solar sail spacecraft to Jovian Trojans planned in Japan around 2030. According to our mission study, a three-mirror reflective telescope optics design with a 90mm × 50mm effective aperture and 16 deg × 8 deg field of view (FoV) followed by a focal plane array HAWAII-2RG with a linear variable filter makes available to detect the EBL at high significance in 0.4–1.6 μm with specific wavelength resolution of ∼ 20 . In the present study, we develop test optics to demonstrate optical performance in room temperature for the future observation. By adopting only mirrors of aspherical surface, we design the optics whose aberration is minimized to show point spread function (PSF) of approximately 3 pix × 3 pix on the focal plane. The mirrors are fabricated by machining aluminum alloy A6061 with a honeycomb processing on the back surface to reduce the mirror mass. After integrating and aligning the mirrors with support jigs, we measure the PSF on the focal plane by a visible camera by inserting collimated beam of different angle of incidence, covering the whole FoV. We evaluate the PSF size by analyzing encircled energy in comparison with that expected from the ray-trace simulation of the optics. Throughout the FoV of the optics, the measured PSF size is comparable to the simulation. The present study demonstrates the precision machining of the aspherical mirrors and the optical performance of the designed optics. As a next step, we plan to develop thermal structure of EXZIT to demonstrate the optical performance in low temperature.
The Mid-infrared Imager, Spectrometer, Coronagraph (MISC) is one of the instruments studied both for the Origins Space Telescope (OST) Mission Concept 1 and 2. The MISC for OST Mission Concept 1 consists of the MISC imager and spectrometer module (MISC I and S), the MISC coronagraph module (MISC COR) and the MISC transit spectrometer module (MISC TRA). The MISC I and S offers (1) a wide field (3 arcminx3 arcmin) imaging and low-resolution spectroscopic capability with filters and grisms for 6-38 μm, (2) a medium-resolution (R~1,000) Integral Field Unit (IFU) spectroscopic capability for 5- 38 μm and (3) a high-resolution (R~25,000) slit spectroscopic capability for 12-18 μm and 25-36 μm. The MISC COR module employs PIAACMC coronagraphy method and covers 6-38 μm achieving 10-7 contrast at 0.5 arcsec from the central star. The MISC TRA module employs a densified pupil spectroscopic design to achieve 3-5 ppm of spectro-photometric stability and covers 5-26 μm with R=100-300. The MISC for OST Mission Concept 2 consists of the MISC wide field imager module (MISC WFI) and the MISC transit Spectrometer module (MISC TRA). The MISC WFI offers a wide field (3 arcmin ×3 arcmin) imaging and low-resolution spectroscopic capabilities with filters and grisms for 6-28μm. The MISC TRA module in the OST Mission Concept 2 also employs the densified pupil spectroscopic design to achieve <5 ppm of spectro-photometric stability and covers 4-22 μm with R=100-300. The highest ever spectrophotometric stability achieved by MISC TRA enables to detect bio-signatures (e.g., ozone, water, and methane) in habitable worlds in both primary and secondary transits of exoplanets and makes the OST a powerful tool to bring an revolutionary progress in exoplanet sciences. Combined with the spectroscopic capability in the FIR provided by other OST instruments, the MISC widens the wavelength coverage of OST down to 5μm, which makes the OST a powerful tool to diagnose the physical and chemical condition of the ISM using dust features, molecules lines and atomic and ionic lines. The MISC also provides the OST with a focal plane guiding function for the other OST science instruments as well as its own use.
The Mid-infrared Imager, Spectrometer Coronagraph (MISC) instrument studied for the Origins Space Telescope (OST) Mission Concept 1 is designed to observe at mid-infrared (MIR) wavelengths ranging from 5 to 38 microns for OST. In the OST Mission Concept 1 study, MISC consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The MISC Coronagraph module (MISC COR) employs Phase-Induced Amplitude Apodization (PIAA) coronagraph (Guyon et al. 2014) in which pupil apodization is modified by reflection on mirrors and central starlight is blocked by focal plane mask and Lyot mask. The performance target of MISC COR is to achieve 10-7 contrast at 0.5” from the central star with covering wavelength of 6-38 microns using 2 optical channels. MISC COR will be a powerful tool to bring a revolutionary progress in exoplanet sciences. In this paper, we present detailed design of its optics and optomechanics, and discuss expected performances for a variety of combination of focal plane mask and Lyot mask.
Cosmic Infrared Background ExpeRiment-2 (CIBER-2) is an international project to make a rocket-borne measurement of the Cosmic Infrared Background (CIB) using three HAWAII-2RG image sensors. Since the rocket telemetry is unable to downlink all the image data in real time, we adopt an onboard data storage board for each sensor electronics. In this presentation, the development of the data storage board and the Ground Station Electronics (GSE) system for CIBER2 are described. We have fabricated, integrated, and tested all systems and confirmed that all work as expected, and are ready for flight.
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy. Imprinted by the history of stellar emission, the EBL in the near infrared traces light back to the birth of the first stars in the Universe and can allow tight constraints on structure formation models. Recent studies using data from the Spitzer Space Telescope and the first Cosmic Infrared Background ExpeRiment (CIBER-1) find that there are excess fluctuations in the EBL on large scales which have been attributed to either high redshift galaxies and quasars, or to stars that were stripped from their host galaxies during merging events. To help disentangle these two models, multi-wavelength data can be used to trace their distinctive spectral features. Following the success of CIBER-1, CIBER-2 is designed to identify the sources of the EBL excess fluctuations using data in six wavebands covering the optical and near infrared. The experiment consists of a cryogenic payload and is scheduled to launch four times on a recoverable sounding rocket. CIBER-2 has a 28.5 cm telescope coupled with an optics system to obtain wide-field images in six broad spectral bands between 0.5 and 2.5 μm simultaneously. The experiment uses 2048 × 2048 HAWAII-2RG detector arrays and a cryogenic star tracker. A prototype of the cryogenic star tracker is under construction for a separate launch to verify its performance and star tracking algorithm. The mechanical, optical, and electrical components of the CIBER-2 experiment will have been integrated into the payload by mid-2018. Here we present the final design of CIBER-2 and our team’s instrument characterization efforts. The design and analysis of the optical focus tests will be discussed. We also report on the performance of CIBER-2 support systems, including the cooling mechanisms and deployable components. Finally, we outline the remaining tasks required to prepare the payload for launch.
We present the concept, design, fabrication, and evaluation of a new deformable mirror (DM), which is latchable, compact, and designed to be applicable for cryogenic environments. The main body of a prototype DM was fabricated from a monolithic cuboid of aluminum using wire electrical discharge machining (EDM). A flexible structure was constructed inside the block by 3-dimensionally crossed hollowing using the EDM. The prototype has 6 × 6 channels, and its volume is 27 mm × 27 mm × 30 mm. The mirror was formed on the surface of the aluminum block using a highprecision NC lathe. The surface figure of the mirror was evaluated and 34 nm rms was obtained. The evaluated surface roughness for the center and off-center areas of the mirror was 9.2 nm rms and 7.6 nm rms, respectively Screws set at the back of the block deform the mirror via springs and the internal flexible structure. We present our first demonstration of deformation of the mirror carried out at ambient temperature. The relationship between the displacement of the screws and the deformation of the mirror was evaluated. Consequently, a linear relationship was confirmed, and no significant hysteresis was found. The application of such mirrors to telescopes used for various different objectives is discussed. We conclude that a DM based on our concept can be used for wavefront correction of space-borne telescopes, especially in the infrared wavelength region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.