KEYWORDS: Scanning electron microscopy, Phase shifting, Transparent conductors, Polarization, Sagnac interferometers, Film thickness, Thin films, Signal detection, Solar cells, Perovskite
The optical interferometric technique with polarization phase shifting has been realized as one of the most important techniques for optical non-contact measurements. However, the measurement of thin film thickness using field emission scanning electron microscopy (FE-SEM) or scanning electron microscopy (SEM) has been inconvenient due to the high cost of maintenance. This research aims to measure the thickness of the Hole Transport Material Nickel (II) oxide (NiO) layer deposited on a glass substrate (NiO/FTO layer) using phase shifting in a Sagnac interferometer. In the experimental setup, the signal is split into the FTO reference arm and the NiO/FTO sample arm using a nonpolarizing beam splitter. The split signals are then detected through a balanced photodetector. By analyzing the signal intensities at polarization settings ranging from 0° to 90°, the phase shift and thickness of the NiO layer can be determined. In this study, a NiO thickness value of 281.64 nm was successfully achieved. To evaluate the accuracy of the proposed measurement method, the percentage error between the proposed technique and the conventional SEM method was computed. The percentage error was found to be 0.23%. These results indicate that the proposed setup holds promise as a cost-effective alternative to SEM for measuring thin film thickness.
This paper presents the investigation of the temperature effects on wavelength calibration of an optical spectrum analyzer or OSA. The characteristics of wavelength dependence on temperatures are described and demonstrated under the guidance of the IEC 62129-1:2006, the international standard for the Calibration of wavelength/optical frequency measurement instruments – Part 1: Optical spectrum analyzer. Three distributed-feedback lasers emit lights with wavelengths of 1310 nm, 1550 nm, and 1600 nm were used as light sources in this work. Each light was split by a 1 x 2 fiber splitter whereas one end was connected to a standard wavelength meter and the other to an under-test OSA. Two Experiment setups were arranged for the analysis of the wavelength reading deviations between a standard wavelength meter and an OSA under a variety of circumstances of different temperatures and humidity conditions. The experimental results showed that, for wavelengths of 1550 nm and 1600 nm, the wavelength deviations were proportional to the value of temperature with the minimum and maximum of -0.015 and 0.030 nm, respectively. While the deviations of 1310 nm wavelength did not change much with the temperature as they were in the range of -0.003 nm to 0.010 nm. The measurement uncertainty was also evaluated according to the IEC 62129-1:2006. The main contribution of measurement uncertainty was caused by the wavelength deviation. The uncertainty of measurement in this study is 0.023 nm with coverage factor, k = 2.
This paper presents the polarizing triangular cyclic interferometer (pTCi) for characterizing optical samples with birefringent properties such as half- and quarter-wave plates. The interferometric system was set up to analyze the phase retardation of wave retarders in both qualitative and quantitative aspects. For the qualitative aspect, the distinct signal outputs from the inspected birefringent components oriented at particular angles are employed to distinguish different types of optical devices. For the quantitative aspect, the same arrangement could determine the phase difference γ of unknown retarders, so that it could be used to characterize types of samples. The experimental results showed the corresponding results obtained from both mentioned aspects where γ were measured to be 89.62° and 177.17° for half- and quarter-wave plates, respectively. The pTCi has been proved to be a proper scheme to characterize optical samples with birefringent properties.
Conference Committee Involvement (1)
Third International Conference on Photonic Solutions
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.