The impact of embedded substrate defects on end-of-line die yield has become significant for advanced process technology nodes. Quality control and grading of wafers intended for leading-edge devices thus require effective detection and identification of embedded defects. In this paper, we present the results of a study on incoming prime-grade wafers using a new defect inspection system capable of dark field scattering and bright field differential interference contrast inspection. The wafers were scanned on a KLA-Tencor Surfscan SP2XP inspection tool, and the combined scan signal were real time analyzed to classify the defects of interest from particles. Inspection of the wafers both before and after a resist-coat process showed that all air pockets detected on the bare substrates resulted in coating defects. In the second part of the study, a set of epitaxial (epi) wafers was inspected using oblique- and normal- incidence dark field scattering as well as bright field differential interference contrast. The defects were classified by rules-based binning, and found to contain a large number of killer defects including epi stacking faults and bumps. Classification results were confirmed by SEM review, and showed that this multi-channel methodology successfully identified the killer defects with >95% accuracy and purity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.