A convolutional network architecture is presented to determine bounding boxes around six organs in thoraxabdomen CT scans. A single network for each orthogonal view determines the presence of lungs, kidneys, spleen and liver. We show that an architecture that takes additional slices before and after the slice of interest as an additional input outperforms an architecture that processes single slices. From the slice-based analysis, a bounding box around the structures of interest can be computed. The system uses 6 convolutional, 4 pooling and one fully connected layer and uses 333 scans for training and 110 for validation. The test set contains 110 scans. The average Dice score of the proposed method was 0.95 and 0.95 for the lungs, 0.59 and 0.58 for the kidneys, 0.83 for the liver and 0.63 for the spleen. This paper shows that automatic localization of organs using multi-label convolution neural networks is possible. This architecture can likely be used to identify other organs of interest as well.
The amount of calcifications in the coronary arteries is a powerful and independent predictor of cardiovascular events and is used to identify subjects at high risk who might benefit from preventive treatment. Routine quantification of coronary calcium scores can complement screening programs using low-dose chest CT, such as lung cancer screening. We present a system for automatic coronary calcium scoring based on deep convolutional neural networks (CNNs). The system uses three independently trained CNNs to estimate a bounding box around the heart. In this region of interest, connected components above 130 HU are considered candidates for coronary artery calcifications. To separate them from other high intensity lesions, classification of all extracted voxels is performed by feeding two-dimensional 50 mm × 50 mm patches from three orthogonal planes into three concurrent CNNs. The networks consist of three convolutional layers and one fully-connected layer with 256 neurons. In the experiments, 1028 non-contrast-enhanced and non-ECG-triggered low-dose chest CT scans were used. The network was trained on 797 scans. In the remaining 231 test scans, the method detected on average 194.3 mm3 of 199.8 mm3 coronary calcifications per scan (sensitivity 97.2 %) with an average false-positive volume of 10.3 mm3 . Subjects were assigned to one of five standard cardiovascular risk categories based on the Agatston score. Accuracy of risk category assignment was 84.4 % with a linearly weighted κ of 0.89. The proposed system can perform automatic coronary artery calcium scoring to identify subjects undergoing low-dose chest CT screening who are at risk of cardiovascular events with high accuracy.
Computer-Aided Detection (CAD) has been shown to be a promising tool for automatic detection of pulmonary nodules from computed tomography (CT) images. However, the vast majority of detected nodules are benign and do not require any treatment. For effective implementation of lung cancer screening programs, accurate identification of malignant nodules is the key. We investigate strategies to improve the performance of a CAD system in detecting nodules with a high probability of being cancers. Two strategies were proposed: (1) combining CAD detections with a recently published lung cancer risk prediction model and (2) the combination of multiple CAD systems. First, CAD systems were used to detect the nodules. Each CAD system produces markers with a certain degree of suspicion. Next, the malignancy probability was automatically computed for each marker, given nodule characteristics measured by the CAD system. Last, CAD degree of suspicion and malignancy probability were combined using the product rule. We evaluated the method using 62 nodules which were proven to be malignant cancers, from 180 scans of the Danish Lung Cancer Screening Trial. The malignant nodules were considered as positive samples, while all other findings were considered negative. Using a product rule, the best proposed system achieved an improvement in sensitivity, compared to the best individual CAD system, from 41.9% to 72.6% at 2 false positives (FPs)/scan and from 56.5% to 88.7% at 8 FPs/scan. Our experiment shows that combining a nodule malignancy probability with multiple CAD systems can increase the performance of computerized detection of lung cancer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.