Vanadium disulfide (VS2) is a prominent metallic member of transition metal dichalcogenides (TMDs) family and has already demonstrated its flair in energy storage device applications such as supercapacitors and batteries. In this work, we have synthesized hexagonal shape VS2 nanomaterial using a facile one step hydrothermal route and investigated the phase, morphology and structural properties of the material. The formation of phase has been confirmed from the X-ray diffraction (XRD) plot by correlating with the database of Joint Committee on Powder Diffraction Standards (JCPDS) 00-036-1139 of 1T VS2. Further, the crystalline behavior of VS2 nanomaterial can be seen from the high resolution transmission electron microscopy (HRTEM) measurement. Moreover, the morphology of the synthesized material is obtained from the field emission gun-scanning electron microscopy (FEG-SEM). Also, the characteristic Raman peaks of 1T VS2 at 140.3 cm-1 and 192.3 cm-1 have been observed from the Raman spectrum indicating the metallic behavior of synthesized material. The peak at 281.8 cm-1 is attributed to the in-plane vibrational mode (E2g1) while the peak at 404.5 cm-1 represents the out-of-plane vibrational mode (A1g) of V-S bond. The Fourier transform infrared (FTIR) spectrum shows the V-S-V and V=S vibrational modes around 534 cm-1 and 982 cm-1 respectively. The study introduces a low cost, large scale, highly crystalline, and metallic VS2 nanomaterial with potential application for next generation supercapacitors and other energy storage devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.