The intestinal epithelial barrier provides protection from external threats that enter the digestive system and persist beyond passage through the stomach. The effects of toxic agents on the intestinal epithelial cell monolayer have not been fully characterized at a cellular level as live imaging of this dynamic interplay at sufficient resolution to interpret cellular responses presents technological challenges. Using a high-resolution native contrast modality called Micro-Optical Coherence Tomography (μOCT), we generated real-time 3D images depicting the impact of the chemical agent EDTA on polarized intestinal epithelial monolayers. Within minutes following application of EDTA, we observed a change in the uniformity of epithelial surface thickness and loss of the edge brightness associated with the apical surface. These observations were measured by generating computer algorithms which quantify imaged-based events changing over time, thus providing parallel graphed data to pair with video. The imaging platform was designed to monitor epithelial monolayers prior to and following application of chemical agents in order to provide a comprehensive account of monolayer behavior at baseline conditions and immediately following exposure. Furthermore, the platform was designed to simultaneously measure continuous trans-epithelial electric resistance (TEER) in order to define the progressive loss of barrier integrity of the cell monolayer following exposure to toxic agents and correlate these findings to image-based metrics. This technological image-based experimental platform provides a novel means to characterize mechanisms that impact the intestinal barrier and, in future efforts, can be applied to study the impact of disease relevant agents such as enteric pathogens and enterotoxins.
KEYWORDS: In vivo imaging, Biology, Medical research, Biological research, Optical coherence tomography, Tomography, Image resolution, Cystic fibrosis, Coherence (optics), Real time imaging
Chronic dysregulated influx of neutrophil into the airway increases neutrophil burden and augments the inflammatory processes often observed in diseases such as cystic fibrosis. The quantification of neutrophil influx is often accomplished with the use of destructive tests such as imaging cytometry and myeloperoxidase assay. However, those methods are unable to capture information about the cascade of events that precede trans-epithelium migration. In this work, we employed a high resolution micro-optical coherence tomography (µOCT) technology to perform real time imaging of neutrophil activity across airway epithelial cells grown on the underside of Transwell permeable supports. This inverted configuration allows the creation of an air-liquid interface at the apical side of the cells. The µOCT imaging technology, based on the principles of spectral-domain OCT, has a lateral and axial resolution of 2 and 1.3µm, respectively. In addition, it has an axial range of approximately 300µm and is capable of recording cross-sectional images at 40 fps. By raster scanning the illumination beam, the behavior of the neutrophils across a 3D volume can be recorded over time. Thus, this imaging modality is capable of resolving individual neutrophils and, potentially, capturing the cascading events involving neutrophil tethering, subsequent adhesion to activated epithelial cells and the ultimate passage through the epithelial cells to the air space on the apical side. As a result, not only can the amount of neutrophil migration be quantified, how neutrophils behave, organize and interact with the epithelial cells and each other can also be more closely analyzed by µOCT imaging.
KEYWORDS: Tomography, Coherence (optics), Signal detection, Visualization, 3D image processing, Receptors, Resistance, Biomedical optics, Current controlled current source
Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 ± 0.12 attached anti-CD18 neutrophils, 0.23 ± 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical resistance (TEER), a measure of membrane integrity that decreases when neutrophils create openings in the epithelium to permit migration. Preliminary results (n = 2) using real-time TEER measurements indicate that TEER change in anti-CD18 migration (26% at 1 hour) is not lower compared to control (14% at 1 hour), suggesting that the neutrophil-epithelial interaction is not impaired. Combined µOCT+TEER will allow the relationship of neutrophil migration and epithelial interactions to be studied to help uncover the mechanisms of altered neutrophil behavior in patients with inflammatory and immune diseases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.