Electro-optical modulator is a key component in data-communication, telecommunication and optical interconnects. In this paper we propose a novel electro-optical modulator design that utilizes Michelson Interferometer based on the widespread Silicon-on-insulator (SOI) technology with 220nm thickness of the silicon device layer. The proposed modulator is working at the telecommunication wavelength 1550nm. Due to its high Pockels coefficient and CMOS compatibility electro-optical polymer (EOP) is used as an active material where its refractive index changes with the applied electric field. The Michelson Interferometer consist of directional couplers which are used in splitting and combining the input power to and from the interferometer arms with 50/50 ratio at 1550nm. Slot waveguide with EOP clad is used in the interferometer arms to achieve high optical field confinement in the EOP which maximizes the mode effective index change of the interferometer arms when applying voltage. Finite Difference Eigen mode (FDE) solver was used to calculate the mode field profiles, effective index and loss of the slot waveguide. By optimizing the waveguide dimensions, we have achieved a waveguide sensitivity Swg=dneff/dnEOP of 0.9135 at 1550nm. Three-dimensional finite-difference-time-domain (3D-FDTD) method was used in the analysis and optimization of our Michelson Interferometer electro-optical modulator. Results show that our Michelson Interferometer modulator exhibit lower VπLπ product than previously published SOI based modulators. Moreover, the modulator exhibit low insertion loss (IL) leading to high extinction ratio (ER) in addition to its CMOS compatibility. Thus, our proposed modulator allows for compact, high performance and low cost modulators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.