In this paper, an ill-posed inverse ellipsometric problem for thin film characterization is studied. The aim is to determine the thickness, the refractive index and the coefficient of extinction of homogeneous films deposited on a substrate without assuming any a priori knowledge of the dispersion law. Different methods are implemented for the benchmark. The first method considers the spectroscopic ellipsometer as an addition of single wavelength ellipsometers coupled only via the film thickness. The second is an improvement of the first one and uses Tikhonov regularization in order to smooth out the parameter curve. Cross-validation technique is used to determine the best regularization coefficient. The third method consists in a library searching. The aim is to choose the best combination of parameters inside a pre-computed library. In order to be more accurate, we also used multi-angle and multi-thickness measurements combined with the Tikhonov regularization method. This complementary approach is also part of the benchmark. The same polymer resist material is used as the thin film under test, with two different thicknesses and three angles of measurement. The paper discloses the results obtained with these different methods and provides elements for the choice of the most efficient strategy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.