We present the outline and the current status of the MAGNUM automated observation system. The operational objective of the MAGNUM Project is to carry out long-term multi-color monitoring observations of active galactic nuclei in the visible and near-infrared wavelength regions. In order to obtain these observations, we built a new 2 m optical-infrared telescope, and sited it at the University of Hawaii's Haleakala Observatory on the Hawaiian Island of Maui. Preliminary observations were started early in 2001. We are working toward the final form of the MAGNUM observation system, which is an unmanned, automated observatory. This system requirement was set by considering that the observation procedures are relatively simple, and the targets must be observed consistently over many years.
In the year 2000, EOS Technologies, Inc. of Tucson, Arizona will complete six two-meter class telescopes for astronomy. Applications for these telescopes range from monitoring of active-galactic nuclei to the search for extra-solar planets. Four of the telescopes will form part of the Keck International Project. These telescopes meet the highest tracking and axis interaction specifications ever attempted in a two-meter class telescope. Each of these telescopes is capable of fully remote-control and semi-autonomous operation.
The MAGNUM Project is designed to carry out multi color monitoring observations of hundreds of AGNs over several years in order to measure the distance of these far away objects using simple physical principles and thereby determine cosmic parameters. The project has been funded by the Research Center of Early Universe. This project started in 1995 and observations are planned to begin in 1998. For the project, we are building a new remote controlled observatory with a 2 m automated telescope as well as new infrared and optical instruments. The telescope is optimized for infrared observations and for obtaining monitoring observations over many years. Our plane is to operate the observatory at the Haleakala summit on the Island of Maui, a suitable place for long time monitoring observations. The telescope is 2 m in diameter and has an alt-azimuth mount. The observatory will be equipped with such facilities as an automated instrument changer, weather monitor, environmental monitor and cloud cover monitor, making it easier to operate the telescope automatically and remotely. Observations will be carried out using an on-site scheduler, which will be commanded through a networked remote computer. Two observatory instruments are being built for the MAGNUM Project. The first is an infrared and optical imaging photometer which incorporates a dichroic beam-splitter and has an imaging capability over a wide wavelength range from 0.3 micrometers to 4 micrometers . It will be primarily used for AGN monitoring. The other is a wide field (33' field of view) 8K X 8K mosaic CCD camera.
Design and performance data on two laser transmitters for spaceborne laser ranging are presented. The first laser uses a master oscillator/power amplifier configuration consisting of a diode pumped Nd:YAG slab ring and a multipass diode pumped slab amplifier which can operate at 40 Hz for 109 shots. The other laser is a diode pumped Nd:YAG slab standing wave oscillator which operates at 10 Hz for 0.6 X 109 shots. For submillimeter laser ranging, one laser operates in a mode-locked cavity-dumped mode to produce 180 mJ, 40 psec pulses at 1.064 micrometers . For altimetry, the same laser operates in a Q-switched mode to produce 700 mJ, 3.5 nsec pulses at 1.064 micrometers . Second and third harmonic generators generate 0.532 micrometers and 0.355 micrometers for ranging at 2 wavelengths to terrestrial targets with inherent atmospheric correction. The oscillator utilizes a ring resonator configuration with active mode locking, active Q-switching, active pre-lase stabilization, and active cavity dumping. The mode-locked output pulsewidth is 40 psec. A second oscillator mode, remotely selectable, produces 3.5 nsec pulses. Stabilization and alignment is done with real-time feedback during the mission. The amplifier is a multipass slab. Parasitic (ASE) oscillations are suppressed despite very high stored energy in the amplifier medium. The second laser transmitter is a linearly polarized Q-switched Nd:YAG slab laser cavity. The Nd:YAG is pumped by a 44-bar array of AlGaAs laser diodes. It produces 45 mJ, 10 nsec, pulses at 1064 nm and will operate at 10 Hz for the two-earth-year on-orbit lifetime. The expected operation will produce 6 X 108 shots during the mission. The laser transmitter will consume 15 watts, which represents a 3 wall plug efficiency. The laser transmitter has a beam divergence of 0.25 mrad and will maintain boresight to the receiver within 100 (mu) rad. The lasers have been specifically developed for ultra-high reliability for use in space exploration of the earth and nearby planets. Applications include planetary altimetry of Mars (MOLA) and earth (GLRS), as well as space geodesy, navigation, and tracking.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.