High quality scatterometry standard samples have been developed to improve the tool matching between different scatterometry methods and tools as well as with high resolution microscopic methods such as scanning electron microscopy or atomic force microscopy and to support traceable and absolute scatterometric critical dimension metrology in lithographic nanomanufacturing. First samples based on one dimensional Si or on Si3N4 grating targets have been manufactured and characterized for this purpose. The etched gratings have periods down to 50 nm and contain areas of reduced density to enable AFM measurements for comparison. Each sample contains additionally at least one large area scatterometry target suitable for grazing incidence small angle X-ray scattering. We present the current design and the characterization of structure details and the grating quality based on AFM, optical, EUV and X-Ray scatterometry as well as spectroscopic ellipsometry measurements. The final traceable calibration of these standards is currently performed by applying and combining different scatterometric as well as imaging calibration methods. We present first calibration results and discuss the final design and the aimed specifications of the standard samples to face the tough requirements for future technology nodes in lithography.
Jolly Xavier, Jürgen Probst, Philippe Wyss, David Eisenhauer, Franziska Back, Eveline Rudigier-Voigt, Christoph Hülsen, Bernd Löchel, Christiane Becker
We present our results on optical absorption enhancement in crystalline silicon (c-Si) absorber structured with transversely quasicrystalline lattice geometry for thin-film photovoltaics. c-Si nanoarchitectures are prepared on the nanoimprinted ten-fold symmetry quasicrystalline textured substrate. The structural features of the fabricated Si nanostructures are analyzed to confirm the defining characteristics of the quasicrystalline texturing of the absorber film. We present the optical absorption plots for a spectrum of incident light for varying angle of light incidence in these fabricated higher symmetry crystalline Si architectures. Neither any back reflector nor antireflection coating is considered in the present study, where use of such layers could further improve the light absorption. The realized quasicrystalline textured silicon nanoarchitectures with higher rotational symmetry lattice geometry are observed to improve the isotropic and broad band absorption properties of the thin film c-Si absorber and envisaged to have efficiency enhanced thin film photovoltaics effective in terms of cost and performance.
Scatterometry is a common technique for dimensional characterisation of nanostructures in the semiconductor industry. Currently this technique is limited to relative measurements for process development and process control. Although the high sensitivity of scatterometry is well known, it is not yet applied for absolute measurements of critical dimensions (CD) and quality control due to the lack of traceability. Thus we aim to establish scatterometry as traceable and absolute metrological method for dimensional measurements. Suitable high quality calibrated scatterometry reference standard samples are currently developed as one important step to enable traceable absolute measurements in industrial applications. The reference standard materials will base either on Si or on Si3N4. A traceable calibration of these standards will be provided by applying and combining different scatterometric as well as imaging calibration methods. First Silicon test samples have been manufactured and characterised for this purpose. The etched Si gratings have periods down to 50 nm and contain areas of reduced density to enable AFM measurements for comparison. We present the current design and first characterisations of structure details and the grating quality based on AFM measurements, optical, EUV and X-Ray scatterometry as well as spectroscopic ellipsometry. Finally we discuss possible final designs and the aimed specifications of the standard samples to face the tough requirements for future technology nodes in lithography.
A smart light trapping scheme is essential to tap the full potential of polycrystalline silicon (poly-Si) thin-film solar cells. Periodic nanophotonic structures are of particular interest as they allow to substantially surpass the Lambertian limit from ray optics in selected spectral ranges. We use nanoimprint-lithography for the periodic patterning of sol-gel coated glass substrates, ensuring a cost-effective, large-area production of thin-film solar cell devices. Periodic crystalline silicon nanoarchitectures are prepared on these textured substrates by high-rate silicon film evaporation, solid phase crystallization and chemical etching. Poly-Si microhole arrays in square lattice geometry with an effective thickness of about 2μm and with comparatively large pitch (2 μm) exhibit a large absorption enhancement (A900nm = 52%) compared to a planar film (A900nm ~ 7%). For the optimization of light trapping in the desired spectral region, the geometry of the nanophotonic structures with varying pitch from 600 nm to 800 nm is tailored and investigated for the cases of poly-Si nanopillar arrays of hexagonal lattice geometry, exhibiting an increase in absorption in comparison to planar film attributed to nanophotonic wave optic effects. These structures inspire the design of prospective applications such as highly-efficient nanostructured poly-Si thin-film solar cells and large-area photonic crystals.
We propose and demonstrate a hybrid cavity system in which metal nanoparticles are evanescently coupled to a
dielectric photonic crystal cavity using a nanoassembly method. While the metal constituents lead to strongly
localized fields, optical feedback is provided by the surrounding photonic crystal structure. The combined effect
of plasmonic field enhancement and high quality factor (Q ≈ 900) opens new routes for the control of light-matter
interaction at the nanoscale.
We introduce a novel approach to assemble fundamental nanophotonic model systems. The approach is based
on the controlled manipulation of single quantum emitters (defect centers in diamond) via scanning probes.
We demonstrate coupling of a single diamond nanocrystal to a planar photonic crystal double-heterostructure
cavity as well as to a silica toroidal resonator. Our studies represent an important step towards well-controlled
cavity-QED experiments with single defect centers in diamond.
We report on the fabrication and optical characterization of photonic crystal cavities for visible wavelengths
made from silicon nitride (SiN). We note significant improvements in fabrication process with respect to our
previous studies. The intrinsic luminescence of the SiN membranes was used as an internal light source to study
the quality factor of the cavity modes. We experimentally found values as high as 3400, which are up to the
present unsurpassed for photonic crystal resonators in the visible spectra range. Finite difference time domain
(FDTD) simulations suggest another boost by a factor of two is possible by further optimizing the fabrication
process. We describe a method by which arbitrary emitters or other nanoscopic objects can be coupled in a
deterministic way by using the manipulation capabilities of an atomic force microscope.
We demonstrate a hybrid approach for the realization of novel nanophotonic devices by combining lithographic
fabrication techniques with a nano-manipulation method. In particular, we report on the fabrication of photonic
crystal cavities as a platform to which arbitrary emitters or other nanoscopic objects can be coupled in a
deterministic way by exploiting the manipulation capabilities of an atomic force microscope. In addition, the
optical properties of such particle-cavity systems are analyzed with regard to changes of the quality factor and
resonance wavelength of the cavity mode. Our approach is well suited to create improved single photon sources
and also complex photonic devices with several emitters coupled coherently via shared cavity modes.
The paper presents our experimental results achieved on the field of investigation of LPCVD silicon nitride based two
dimensional photonic crystals for visible wavelengths. Our research concentrates on the photonic band gap and defect
engineering with respect to the use of silicon nitride based photonic crystals as optical resonators in the visible range of
electromagnetic spectra. In order to optically characterize the fabricated photonic crystals, transmission setup utilizing
broad band white light source is being used. Using this setup, photonic band gaps in the range between 500 and 900 nm,
and thus covering the entire transmission range of LPCVD silicon nitride in the visible range, could be identified for
various values of the slab thickness. By incorporating line defects, we fabricated and investigated several photonic
crystal filter demonstrators. By optimizing the defect geometry, we achieved transmission values of over 85%.
Photonic crystal device based on silicon nitride resonant cavity and acting as a band pass filter is presented. The devise consists of an incoming waveguide, coupling dipole cavity and outgoing waveguide. High transmission for resonant frequency and sufficient attenuation for other frequencies is achieved. Results of band gap and transmission calculations as well as the fabrication approach and fabricate structures are presented. Measurement setup to experimentally prove the predicted optical properties is presented.
The production of X-ray masks is one of the key techniques for X-ray lithography and the LIGA process. Different ways for the fabrication of X-ray masks has been established. Very sophisticated, difficult and expensive procedures are required to produce high precision and high quality X-ray masks. In order to minimize the cost of an X-ray mask, the mask blank must be inexpensive and readily available. The steps involved in the fabrication process must also be minimal. In the past, thin membranes made of titanium, silicon carbide, silicon nitride (2-5μm) or thick beryllium substrates (500μm) have been used as mask blanks. Thin titanium and silicon compounds have very high transparency for X-rays; therefore, these materials are predestined for use as mask membrane material. However, the handling and fabrication of thin membranes is very difficult, thus expensive. Beryllium is highly transparent to X-rays, but the processing and use of beryllium is risky due to potential toxicity. During the past few years graphite based X-ray masks have been in use at various research centers, but the sidewall quality of the generated resist patterns is in the range of 200-300 nm Ra. We used polished graphite to improve the sidewall roughness, but polished graphite causes other problems in the fabrication of X-ray masks. This paper describes the advantages associated with the use of polished graphite as mask blank as well as the fabrication process for this low cost X-ray mask. Alternative membrane materials will also be discussed.
Poly-methylmethacrylate (PMMA), a positive resist, is the most commonly used resist for deep X-ray lithography (DXRL)/LIGA technology. Although PMMA offers superior quality with respect to accuracy and sidewall roughness but it is also extremely insensitive. In this paper, we present our research results on SU-8 as negative resist for deep X-ray lithography. The results show that SU-8 is over two order of magnitude more sensitive to X-ray radiation than PMMA and the accuracy of the SU-8 microstructures fabricated by deep X-ray lithography is superior to UV-lithography and comparable to PMMA structures. The good pattern quality together with the high sensitivity offers rapid prototyping and direct LIGA capability. Moreover, the combinational use of UV and X-ray lithography as well as the use of positive and negative resists made it possible to fabricate complex multi-level 3D microstructures. The new process can be used to fabricate complex multi-level 3D structures for MEMS, MOEMS, Bio-MEMS or other micro-devices.
During the past few years, graphite based X-ray masks have been in use at CAMD and BESSY to build a variety of high aspect ratio microstructures and devices where low side wall surface roughness is not needed In order to obtain lower sidewall surface roughness while maintaining the ease of fabrication of the graphite based X-ray masks, the use of borosilicate glass was explored. A borosilicate glass manufactured by Schott Glas (Mainz, Germany) was selected due to its high purity and availability in ultra-thin sheets (30 μm). The fabrication process of the X-ray masks involves the mounting of a 30 μm glass sheet to either a stainless steel ring at room temperature or an invar ring at an elevated temperature followed by resist application, lithography, and gold electroplating. A stress free membrane is obtained by mounting the thin glass sheet to a stainless steel ring, while mounting on an invar ring at an elevated temperature produces a pre-stressed membrane ensuring that the membrane will remain taut during X-ray exposure. X-ray masks have been produced by using both thick negative- and positive-tone photoresists. The membrane mounting, resist application, lithography, and gold electroplating processes have been optimized to yield X-ray masks with absorber thicknesses ranging from 10 μm to 25 μm. Poly(methyl methacrylate) layers of 100 μm to 400 μm have been successfully patterned using the glass membrane masks.
Interest in thick photoresist applications is steadily growing. Besides the bump fabrication and wire interconnect technology, the process of patterning thick layer photoresists by UV lithography is specially qualified for applications in microelectro-mechanical-systems (MEMS). Specialized equipment and new photoresists have been developed or are under development to cope with the new challenges in the field of preparing extremely thick photoresist layers, the process of patterning these thick resists, and to deal with the difficulties of the following galvanoplating step. As one of the most critical steps in thick photoresists processing, the baking procedure was investigated. Two positive tone photoresists were processed by means of three different baking methods: air-forced oven, ramped hotplate, and IR radiation. Furthermore, combinations between the methods were tested. It could be shown that IR baking is advantageous compared to the other methods with respect to process duration and energy consumption. Compared to edge steepness, resolution, edge loss, and surface roughness, all methods deliver nearly same results. A minimum width of 2-3 micrometers for the resist bars was found to be necessary to withstand the fabrication process of lines and spaces in about 15 micrometers thick resist. For thicker layers high aspect ratios of more than 10 as well as steep edges of more than 88 degrees could be fabricated. The resist patterns can be molded by using electroplating.
A new technology called 3D UV-Microforming consisting of an advanced resist preparation process, UV lithographic steps, resist development, moulding procedures by electrodeposition, and finally stripping and cleaning for finishing the structures was developed for application in microsystem technology. It enables the low-cost fabrication of a wide variety of micro components for many different users. During resist preparation, layers up to two hundred pm thickness have been obtained until now. By using a standard UV mask aligner as an exposure tool followed by immersion development, thick resist layers up to 100 jim could be patterned in a single step on pre-processed silicon wafers. Repeated exposure and development were successfully used for structuring resist layers of up to 200 R thickness. High aspect ratios of more than 10 as well as steep edges of more than 88' could be fabricated. The resist patterns were moulded by using pulse or DC electroplating. For microsystem applications some metals and alloys were deposited. Three-dimensional micro components were fabricated as demonstrators for the new technique. It allows the use of materials with interesting properties which could not be provided by standard processes.
Keywords: 3D UV-Microforming, electrochemical microfabrication, UV lithography, thick photoresist layers, high aspect ratio, steep edges, moulding by electrodeposition, sacrificial layers, 3D surface components, low-cost technology
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.