Polymer nonfullerene solar cells are emerging as an alternative of polymer fullerene solar cells. However, maximizing the short-circuit density and open-circuit voltage is a critical issue in these solar cells. Here, using ultrafast spectroscopy, we measured exciton relaxation and charge separation dynamics in polymer nonfullerene blend with low driving force. Our study indicates high polaron yield despite the energy loss of as low as 0.59 eV. This suggests that the small driving force has minimum detrimental effect in realizing high performance in polymer nonfullerene solar cells.
The initial steps in organic photovoltaic cell (OPV) operation involve the formation of neutral excitons through photo absorption, exciton diffusion to and separation into free charges at the donor acceptor interface.1, 2As the usable solar spectrum spans a large range from the visible to the infra-red (IR), an obvious direction for improved light harvesting is to synthesize donor and acceptor materials with complementary absorption. In such devices, specifically those involving polymer donors and small molecule acceptors, both charge transfer from donor and acceptor moieties, and energy (exciton) transfer from high band gap to low band gap material are possible. Here we show that when charge and exciton transfer processes are present, the co-existence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low band-gap polymer is hindered due to exciton population in the larger band-gap acceptor domains. Our results further show that excitons in the lower bandgap material should have a relatively long lifetime compared to the transfer time of excitons from the higher band gap material, in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.