KEYWORDS: Sensors, Aerospace engineering, Calibration, Electrons, Particles, Data processing, Ions, Data modeling, Space operations, Space operations, Telescopes, Space telescopes, Data conversion
The space weather instruments (Space Environment In-Situ Suite – SEISS) on the soon to be launched, NOAA GOES-R series spacecraft offer significant space weather measurement performance advances over the previous GOES N-P series instruments. The specifications require that the instruments ensure proper operation under the most stressful high flux conditions corresponding to the largest solar particle event expected during the program, while maintaining high sensitivity at low flux levels. Since the performance of remote sensing instruments is sensitive to local space weather conditions, the SEISS data will be of be of use to a broad community of users. The SEISS suite comprises five individual sensors and a data processing unit: Magnetospheric Particle Sensor-Low (0.03–30 keV electrons and ions), Magnetospheric Particle Sensor-High (0.05–4 MeV electrons, 0.08–12 MeV protons), two Solar And Galactic Proton Sensors (1 to >500 MeV protons), and the Energetic Heavy ion Sensor (10-200 MeV for H, H to Fe with single element resolution). We present comparisons between the enhanced GOES-R instruments and the current GOES space weather measurement capabilities. We provide an overview of the sensor configurations and performance. Results of extensive sensor modeling with GEANT, FLUKA and SIMION are compared with calibration data measured over nearly the entire energy range of the instruments. Combination of the calibration results and model are used to calculate the geometric factors of the various energy channels. The calibrated geometric factors and typical and extreme space weather environments are used to calculate the expected on-orbit performance.
The Teledyne microdosimeter is a novel miniature dosimeter that has become recently available to satellite
manufacturers and programs to provide awareness of the total radiation dose received by the satellite and its associated
subsystems. A characterization of the response of the dosimeter to protons of energies from 30 - 200 MeV as a function
of angle, energy and dose rate is presented in this paper. In addition, the response of the dosimeter to a simulated Solar
proton event with several different levels of shielding has been measured. These results show that the dosimeter
response is relatively uniform over a wide range of conditions for protons. Monte Carlo modeling of the dosimeter for
isotropic particle fluxes (both electrons and protons) has also been accomplished. It is shown that a simplified model is
appropriate in determining the response of the dosimeter when using it to design low cost, simple instruments for space
weather and situational awareness applications.
KEYWORDS: Electrons, Sensors, Particles, Space telescopes, Calibration, Telescopes, Space operations, Data modeling, Digital breast tomosynthesis, Collimators
The CEASE instrument was designed to measure energetic electrons and protons in the space environment. It consists
of two dosimeter detectors, a particle telescope and a Single Event Effect rate detector. CEASE was designed to be an
engineering instrument providing real-time warnings of space weather hazards to the spacecraft operators. The Air
Force Research Laboratory has flown CEASE instruments on two long term missions and is using the data as a part of its
radiation belt model research. A third CEASE instrument will be flown on the Air Force Research Laboratory DSX
mission. The method and results of the calibration of the particle telescope sensor on CEASE will be presented. An
extensive program of telescope response simulation calculations has also been carried out using both simple analytical
models and the Monte Carlo particle interaction codes, MCNPX and Integrated TIGER Series. Comparison of
calculated telescope results to the measured calibration data will be presented.
HEPS was designed to measure high energy protons, with energies between 25 and 400 MeV, in the space environment. The instrument uses a collection of solid state Si particle detectors and Gadolinium Silicate (GSO) crystal scintillators to detect the protons and measure their energy. The sensors form a coaxial arrangement of four Si detectors, to provide an event trigger when struck by an incident proton. The energy measurement for each event is provided by the measurement of its energy losses in the two scintillator elements. Energy losses are determined by photodiodes that collect light produced in GSO by the protons. The HEPS flight unit was extensively calibrated in the 30-217 MeV energy range. The beam measurements were carried out at a series of angles in the instrument field-of-view as well as at larger angles to test its rejection capabilities. An extensive program of computer modeling of HEPS response has been carried out using the Monte Carlo particle interaction code MCNPX. Calibration data will be compared to the results of the calculations. Conclusions concerning the calibrated geometric factors will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.