We report the hyperspectral imaging system for the measurement of anthocyanin accumulations in ‘bok choy’ grown in the different environmental conditions in the indoor farms. Wavelength bandwidth from 400nm to 700nm that covers chlorophyll A, B, and anthocyanin absorption peaks was three dimensionally (wavelength vs intensity in the area of 100cm2) measured by hyperspectral imaging instrument. Estimated anthocyanin accumulations by hyperspectral imaging technique were compared with those measured by chemical (destructive) analysis. Coinciding results between hyperspectral and destructive analysis suggest that hyperspectral imaging system can be a valuable photonic instrument to replace previously used destructive analysis in agricultural researches. (Supported by 421035-04)
The current study describes metal ion sensing with double crossover DNAs (DX1 and DX2), artificially designed as a platform of doping. The sample for sensing is prepared by a facile annealing method to grow the DXs lattice on a silicon/silicon oxide. Adding and incubating metal ion solution with the sensor substrate into the micro-tube lead the optical property change. Photoluminescence (PL) is employed for detecting the concentration of metal ion in the specimen. We investigated PL emission for sensor application with the divalent copper. In the range from 400 to 650 nm, the PL features of samples provide significantly different peak positions with excitation and emission detection. Metal ions contribute to modify the optical characteristics of DX with structural and functional change, which results from the intercalation of them into hydrogen bonding positioned at the center of double helix. The PL intensity is decreased gradually after doping copper ion in the DX tile on the substrate.
In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.
KEYWORDS: Atrial fibrillation, Control systems, Microcontrollers, Device simulation, Control systems design, Sensors, Logic, Motion models, Scalable video coding, Data communications
This paper presents a networked simulation for an integrated chassis control system of AFS (Active Front Steering) and
ITD (Intelligent Torque Distribution). Integration of each chassis control system is used to overcome the limit of
performance when each chassis controller is used individually. We show an integration method AFS and ITD under the
supervisory controller which determines the operation modes based on vehicle variables. The experimental set-up for the
networked simulation of the integrated chassis control consists of four microcontroller boards, a steering wheel sensor
and a data acquisition board where all the microcontrollers and a sensor are communicated using the CAN protocol. It is
shown by experimental results that the integrated control system can achieve better performance than simply combined
individual controllers in the sense of energy consumption.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.