Rotating shafts in drop lifts of manufacturing facilities are susceptible to fatigue cracks as they are under repetitive heavy loading and high speed spins. However, it is challenging to use conventional contact transducers to monitor these shafts as they are continuously spinning with a high speed. In this study, a noncontact crack detection technique for a rotating shaft is proposed using air-coupled transducers (ACTs). (1) Low frequency (LF) and high frequency (HF) sinusoidal inputs are simultaneously applied to a shaft using two ACTs, respectively. A fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands at the modulation frequencies, which are the sum and difference of the two input frequencies Then LF and HF inputs are independently applied to the shaft using each ACT. These three ultrasonic responses are measured using another ACT. (2) The damage index (DI) is defined as the energy of the first sideband components, which corresponding to the frequency sum and difference between HF and LF inputs. (3) Steps 1 and 2 are repeated with various combinations of HF and LF inputs. Crack existence is detected through an outlier analysis of the DIs. The effectiveness of the proposed technique is investigated using a steel shaft with a real fatigue crack.
This paper presents a fatigue crack detection technique based on visualization of nonlinear ultrasonic wave modulation produced by a fatigue crack. When distinctive low frequency (LF) and high frequency (HF) inputs are generated and applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. In this study, the two input signals are created by two air-coupled transducers (ACT), and the corresponding ultrasonic responses are scanned over a target specimen using a 3D laser Doppler vibrometer (LDV). The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), and continuous wavelet transform (CWT) filtering. Then, the extracted spectral sideband components are visualized near the fatigue crack. The effectiveness of the proposed non-contact scanning technique is tested using an aluminum plate with a real fatigue crack.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.