This paper reviews ways and means used for reduction or elimination of periodic nonlinearity in heterodyne interferometers. The periodic nonlinearity resulting from polarization mixing or frequency mixing in heterodyne interferometers was modeled into one expression, which included the initial polarization state of the laser source, the rotational alignment of the beam splitter along with different transmission coefficients for polarization states and the rotational misalignment of a receiving polarizer. Three compensation techniques, measuring two orthogonal output signals, Lissajous Compensation and Chu-Ray Algorithm, are described and discussed for reduction of periodic nonlinearity. These algorithms needed at least one fringe of motion or a constant velocity sweep to properly correct the motion. And five types of two spatially separated beam interferometer configurations are described and discussed for elimination of periodic nonlinearity to a picometer level. It is concluded that the main disadvantage of these configurations was their complex architecture with unbalanced long beam paths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.