In the last decades, all the main existing telescopes have been equipped with Adaptive Optics (AO) facilities, and AO is considered an enabling technology for future giant telescopes. A significant limitation to the scientific exploitation of AO data is represented by uncertainties in the knowledge of the Point Spread Function, strongly linked to the need for optimised software tools for AO image analysis. We aim to develop a software package designed and optimised to analyse AO images with complex and spatially variable PSF to maximise the exploitation of high-precision quantitative science from past, present and future AO observations. The new software will address two problems: 1) extracting and modelling the AO PSF across the field of view directly from the AO imaging and spectro-imaging data and 2) extracting quantitative information from data featuring blended sources. The new methods will be validated on simulated images and available data from existing and upcoming AO facilities. The new FAIR software, written in Python™, will be based on a version of the Starfinder software optimised to handle large-format images with variable and structured PSF.
The Extremely Large Telescopes (ELTs), thanks to their large apertures and cutting-edge Multi-Conjugate Adaptive Optics (MCAO) systems, promise to deliver sharper and deeper data even than the JWST. SHARP is a concept study for a near-IR (0.95-2.45 μm) spectrograph conceived to fully exploit the collecting area and the angular resolution of the upcoming generation of ELTs. In particular, SHARP is designed for the 2nd port of MORFEO@ELT. Composed of a Multi-Object Spectrograph, NEXUS, and a multi-Integral Field Unit, VESPER, MORFEO-SHARP will deliver high angular (∼30 mas) and spectral (R≃300, 2000, 6000, 17000) resolution, outperforming NIRSpec@JWST (100 mas). SHARP will enable studies of the nearby Universe and the early Universe in unprecedented detail. NEXUS is fed by a configurable slit system deploying up to 30 slits with ∼2.4” length and adjustable width, over a field of about 1.2’×1.2’ (35 mas/pix). Each slit is fed by an inversion prism able to rotate by an arbitrary angle the field that can be seen by the slit. VESPER is composed of 12 probes of 1.7”×1.5” each (spaxel 31 mas) probing a field 24”×70”. SHARP is conceived to exploit the ELT aperture reaching the faintest flux and the sharpest angular resolution by joining the sensitivity of NEXUS and the high spatial sampling of VESPER to MORFEO capabilities. This article provides an overview of the scientific design drivers, their solutions, and the resulting optical design of the instrument achieving the required optical performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.