Digital pathology via whole-slide imaging (WSI) systems has recently been approved for the primary diagnostic use in the US. Acquiring whole-slide images with spectral information at each pixel permits the use of multiplexed antibody labeling and allow for the measurement of cellularly resolved chemical information. Here, we report the development of a high-throughput terapixel hyperspectral WSI system using prism-based slit-array dispersion. We demonstrate a slit-array detection scheme for absorption-based measurements and a slit-array projection scheme for fluorescence-based measurements. The spectral resolution and spectral range in the reported schemes can be adjusted by changing the orientation of the slit-array mask. We use our system to acquire 74 5-megapixel brightfield images at different wavelengths in ∼1 s, corresponding to a throughput of 0.375 gigapixels / s. A terapixel whole-slide spatial–spectral data cube can be obtained in ∼45 min. The reported system is compatible with existing WSI systems and can be developed as an add-on module for whole-slide spectral imaging. It may find broad applications in high-throughput chemical imaging with multiple antibody labeling. The use of slit array for structured illumination may also provide insights for developing high-throughput hyperspectral confocal imaging systems.
KEYWORDS: Digital holography, Holograms, Computer programming, Quantization, Raster graphics, Holography, Signal to noise ratio, Phase retrieval, Digital imaging, Image processing
We present a modified version of the general JPEG encoder for digital holograms. Since digital holograms are characterized by most of their information concentrated at first-order term, to compress digital holograms only with their first-order term is available. The proposed algorithm performs 2D-DCT (discrete cosine transform) on digital holograms as the general JPEG, then quantizes and encodes the low-frequency section extracted with an adaptive mask. Compatible with the general JPEG, the compressed holograms can be directly decoded by the general decoders. Our simulation and experimental results show that this algorithm has higher compression ratio than the general JPEG and more accurate retrieved phase while the compression is equal.
Phase retrieval techniques have been used for the measurement of 3-D objects. The phase of the transmitted or reflected light beam is modulated by different characteristics of the object and reveals valuable information. The multi-plane diffraction iterative algorithm is a method of phase retrieval with a single beam. Based on numerical phase-error correction system, the method obtains the phase and amplitude of a wavefront with a sequence of intensity patterns recorded at different planes. There are various parameters involved in this method. The parameters impact the retrieval in common. For the optimization in implementation and guidance to experiments, we study six parameters of this method by a series of simulations. The six parameters are the number of sampling planes, the round trip number of iterative, the initial phase, the distance between the object and the first sampling plane, the distance between sampling planes and the wavelength. A discussion on the result of the simulations is also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.