Optical coherence tomography angiography (OCTA) has growing application for microvascular assessment in dermatology. Various instruments, imaging protocols, processing methods, and metrics have been used to describe the microvasculature, so comparing different study outcomes is currently not generally feasible. We present a user-friendly, open-source toolbox, OCTAVA, to help remedy this shortcoming. We present three use cases for assessing software accuracy and repeatability, and we investigate how OCTAVA can support wider adoption of OCTA as a clinical tool. Wide adoption of this software will help drive the development of reliable microvascular biomarkers for early detection and treatment guidance of diseases.
Significance: Pulsatility is a vital characteristic of the cardiovascular system. Characterization of the pulsatility pattern locally in the peripheral microvasculature is currently not readily available and would provide an additional source of information, which may prove important in understanding the pathophysiology of arterial stiffening, vascular ageing, and their linkage with cardiovascular disease development.
Aim: We aim to confirm the suitability of speckle decorrelation optical coherence tomography angiography (OCTA) under various noncontact/contact scanning protocols for the visualization of pulsatility patterns in vessel-free tissue and in the microvasculature of peripheral human skin.
Results: Results from five healthy subjects show distinct pulsatile patterns both in vessel-free tissue with either noncontact or contact imaging and in individual microvessels with contact imaging. Respectively, these patterns are likely caused by the pulsatile pressure and pulsatile blood flow. The pulse rates show good agreement with those from pulse oximetry, confirming that the pulsatile signatures reflect pulsatile hemodynamics.
Conclusions: This study demonstrates the potential of speckle decorrelation OCTA for measuring localized peripheral cutaneous pulsatility and defines scanning protocols necessary to undertake such measurements. Noncontact imaging should be used for the study of pulsatility in vessel-free tissue and contact imaging with strong mechanical coupling in individual microvessels. Further studies of microcirculation based upon this method and protocols are warranted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.