This study analyses the pH-dependent time resolved fluorescence of mCardinal and mNeptune, two red-shifted fluorescent proteins with applications in biomedical imaging. We utilized molecular dynamics (MD) simulations to illuminate the influence of water molecules on the proteins´ photophysical properties.
In mCardinal, the average fluorescence lifetime markedly rises from 0.95 ns at pH 7.0 to 1.25 ns at pH 5.5. Conversely, mNeptune exhibits a constant fluorescence lifetime, showing no pH sensitivity.
Through Decay-Associated Spectra and MD simulations, we correlated mCardinal’s pH-induced lifetime changes with its molecular properties. Despite both proteins being equally stabilized by hydrogen bonds, mCardinal’s chromophore formed more water contacts than mNeptune’s. Additionally, the chromophore’s interactions with specific amino acids varied between the two proteins, suggesting distinct differences in the excited state proton transfer as a crucial mechanism for pH sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.