This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Printability and propagation of stochastic defects through a study of defects programmed on EUV mask
Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers.
In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
Co-optimization of the lithography and etch processing is expected to be required to achieve the best pitch walk control. Previous work has shown that improving the across wafer CD uniformity of the line patterns after core etch has limited impact on the space CD uniformity after the SADP process, whereas the CD uniformity of the spaces after SAQP did show some dependence. There are additional space populations created by an SAQP process. The variation of these different populations, along with the spacer deposited line populations, is the root cause of the non-uniform grating that results in pitch walk. The complex interactions of the lithography and etch processes’ impact on the CD and profile need to be understood to produce the optimal performance.
Pitch walk is a component of the overall Edge Placement Error (EPE) budget. With current nodes using SAQP for multiple device layers and future nodes expected to continue to implement this patterning technique, minimization of pitch walk variability is an important part of overall patterning optimizations. In this work, we will show how cooptimized exposure dose and etch processes for SAQP patterning can improve pitch walk performance. We will provide a target exposure dose metric for a 32nm pitch SAQP grating. The methodology for achieving the best pitch walk performance by combination of etch process optimization with dose correction will also be shown.
This paper provides a thorough experimental assessment of the implementation of vote-taking, and discusses its pro’s and con’s. Based on N=4 vote-taking, we demonstrate the capability to mitigate different types of mask defects. Additionally, we found that blending different mask images brings clear benefit to the imaging, and provide experimental confirmation of improved local CDU and intra-field CDU, reduction of stochastic failures, improved overlay, ... Finally, we perform dedicated throughput calculations based on the qualification performance of ASML’s NXE:3400B scanner.
This work must be seen in the light of an open-minded search for options to optimally enable and implement EUV lithography. While defect-free masks and EUV pellicles are without argument essential for most of the applications, we investigate whether some applications could benefit from vote-taking.
To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes.
Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
View contact details
No SPIE Account? Create one